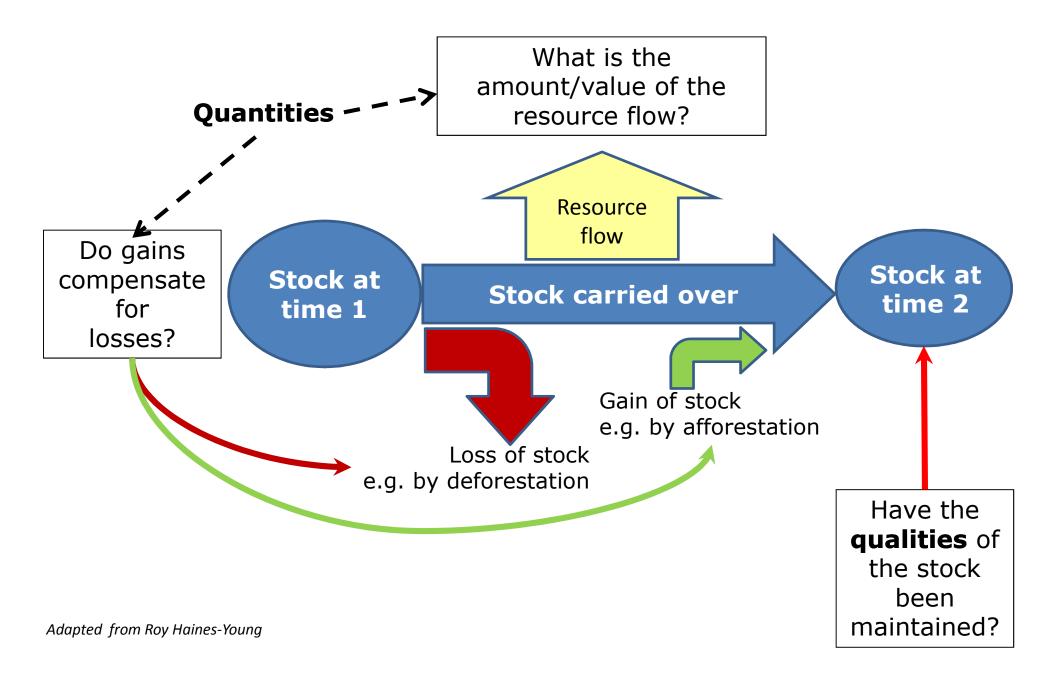
École Polytechnique Fédérale de Lausanne Guest Conference 26 March 2015

Prendre le capital naturel écosystémique en compte(s): un test d'application de la compatibilité écosystémique pour le haut bassin du Rhône

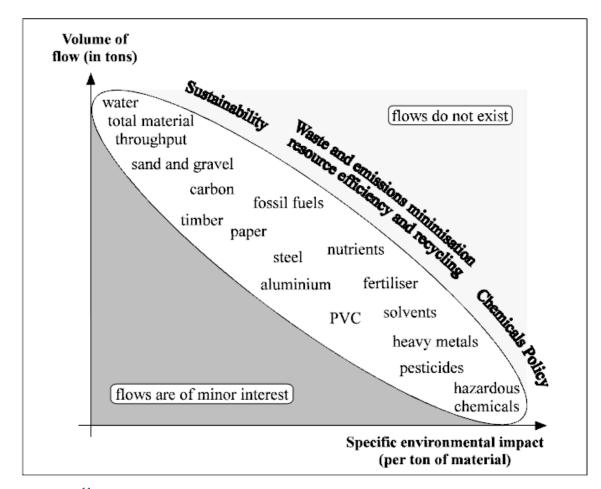

Taking into account(s) the ecosystem natural capital: an experimental implementation for the Upper River Rhône catchment

Jean-Louis Weber

European Environment Agency Scientific Committee Honorary Professor, School of Geography, University of Nottingham Consultant on Ecosystem Natural Capital Accounting

jlweber45@gmail.com

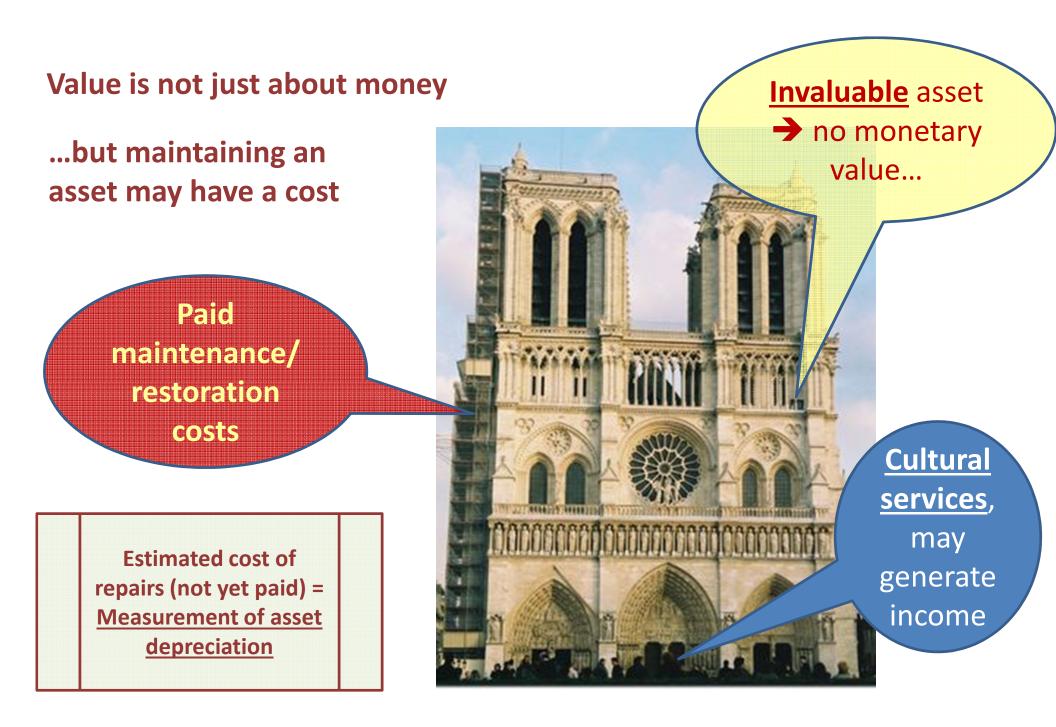
Ecosystem Natural Capital Account: attempt to respond to basic questions

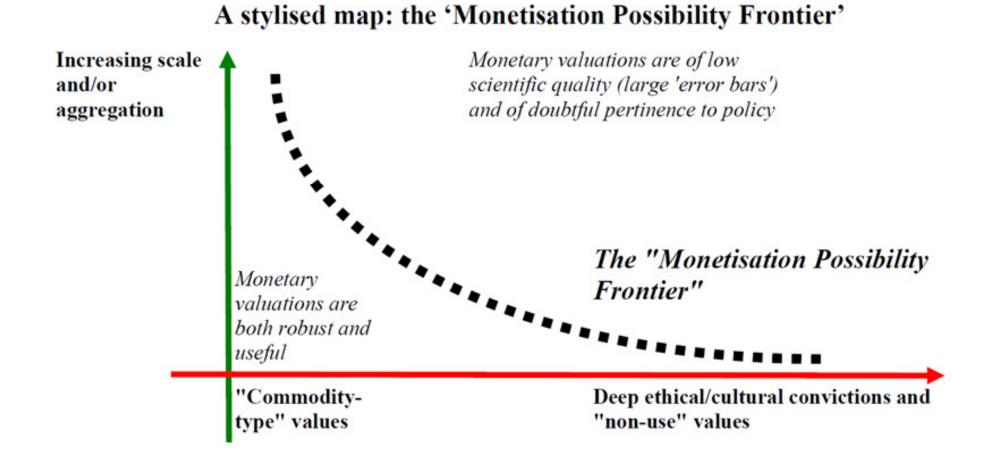


Accounts are about recording and summarizing values...

• Counts, inventories are limited, standalone "accounts", issues in aggregating measurements in physical units

SEEA Part1: Difficulty to Aggregate Physical Supply and Use Tables


• "Of note is that, unlike monetary flows which are measured in currency units, **physical flows are generally measured in different units depending on the material**. Thus, while it is conceptually possible to compile a complete PSUT for all material flows in an economy using a single measurement unit (e.g. tonnes), it is not usual practice". (SEEA2012, 2.47)

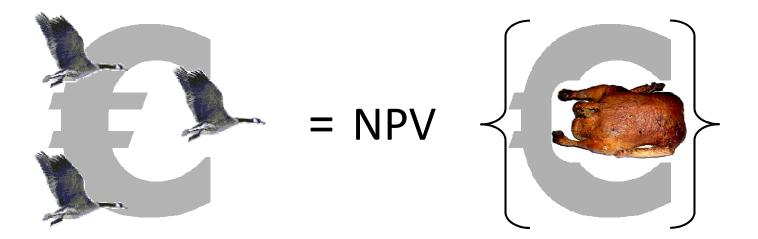

Source: Steurer (1996),¹¹ as developed with W. Radermacher (StBA) in 1995

Accounts are about recording and summarizing values...

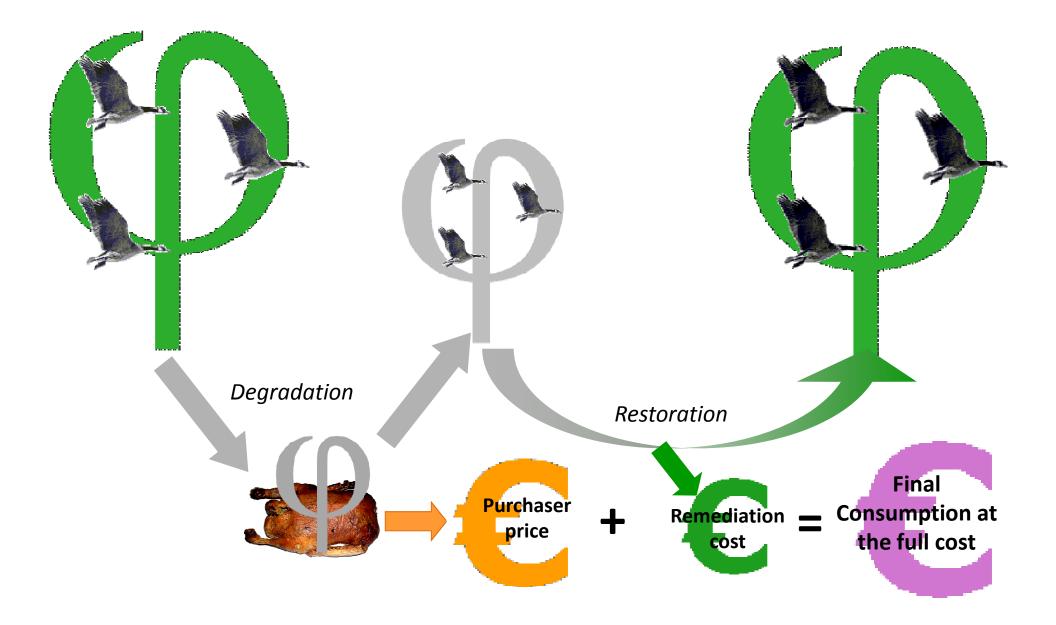
- Counts, inventories are limited, standalone "accounts", issues in aggregating measurements in physical units
- Accounts or balances, integrated by double-entry rules are about values:
 - − Assets value → Wealth
 - − Flows, receipts, expenditures → Net Income
- Monetary value is important but it is not the only value that we acknowledge

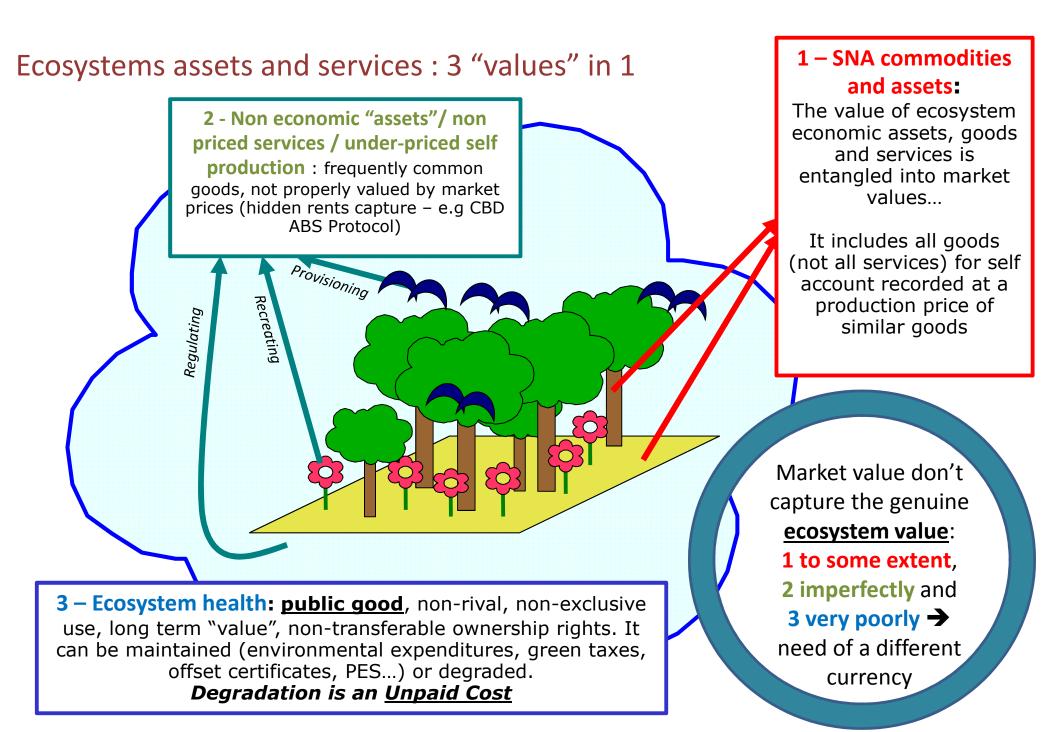
O'Connor and Steurer: The "Frontier of Monetisation" in Environmental Valuation, paper presented at the 6th meeting of the London Group on Environmental Accounting, Canberra November 1999

The conventional economic valuation of resource depletion is not appropriate for ecosystem degradation

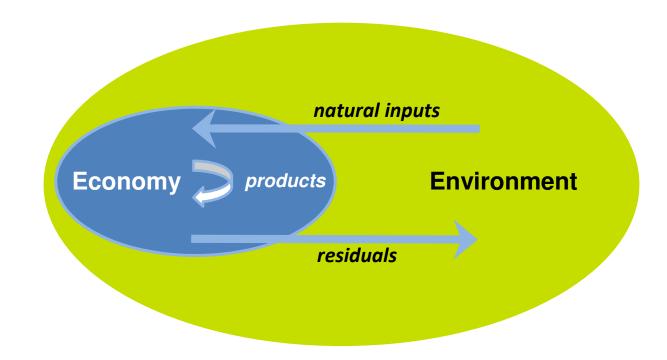

Conventional economic theory:

asset depreciation =

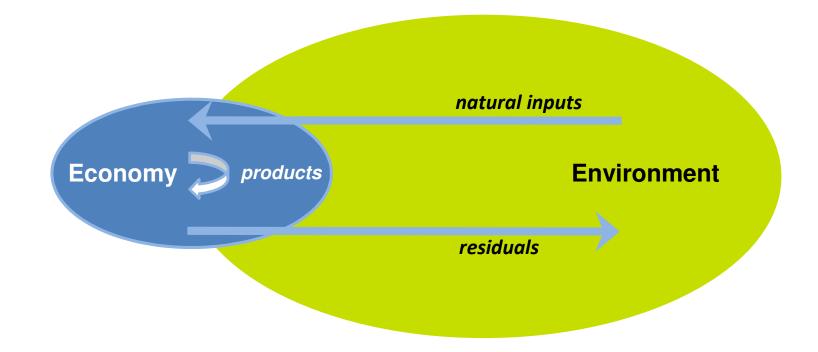

- 1. difference between asset values at two dates
- 2. cumulated loss of future benefits (financial approach, "Net Present Value")

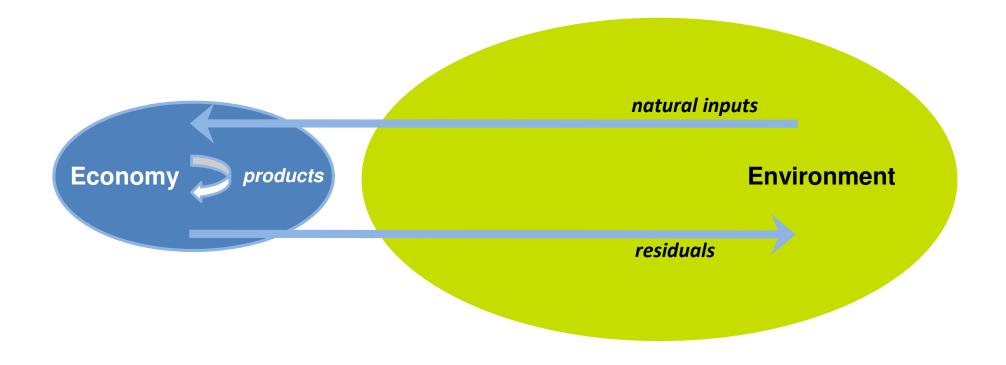

NB: 1. and 2. are assumed to be equivalent under the condition of "perfect market"

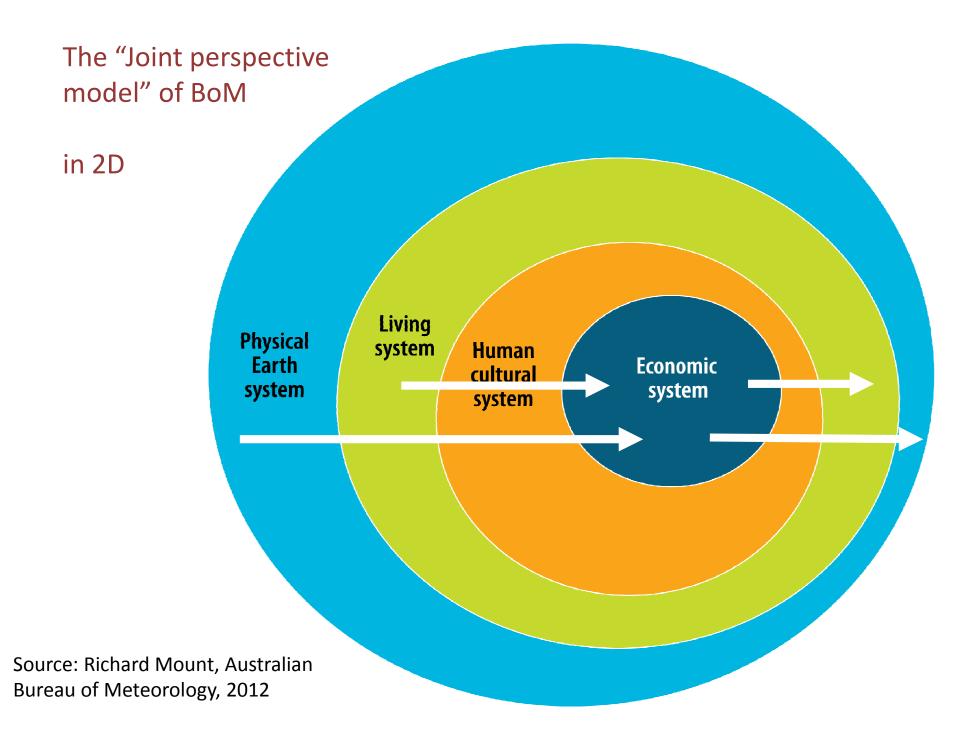
Financial value of natural assets = "Net Present Value" of expected future benefits



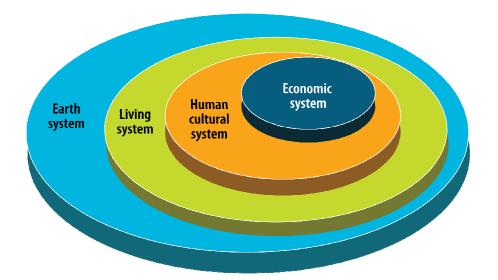
Ecosystem natural capital accounting: asset = "quantity*quality" (physical measurement) only change is priced (imputed remediation costs)

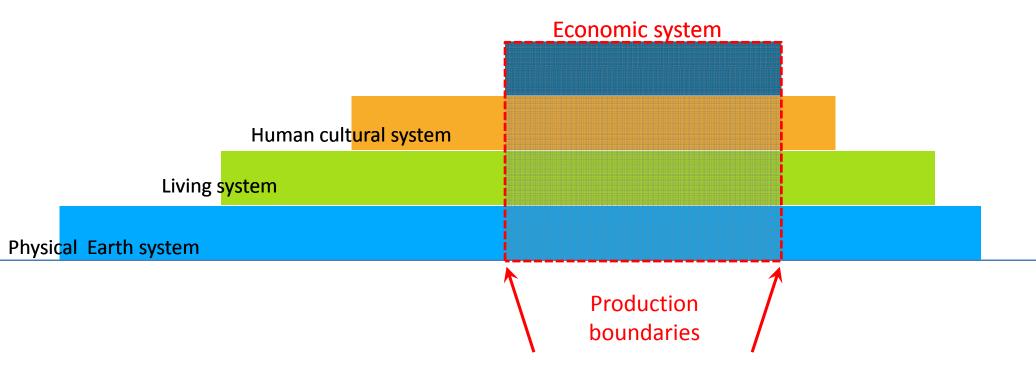



The current representation of the relation economy-nature in the SEEA and a mis-interpretation


The current representation of the relation economy-nature in the SEEA and a mis-interpretation

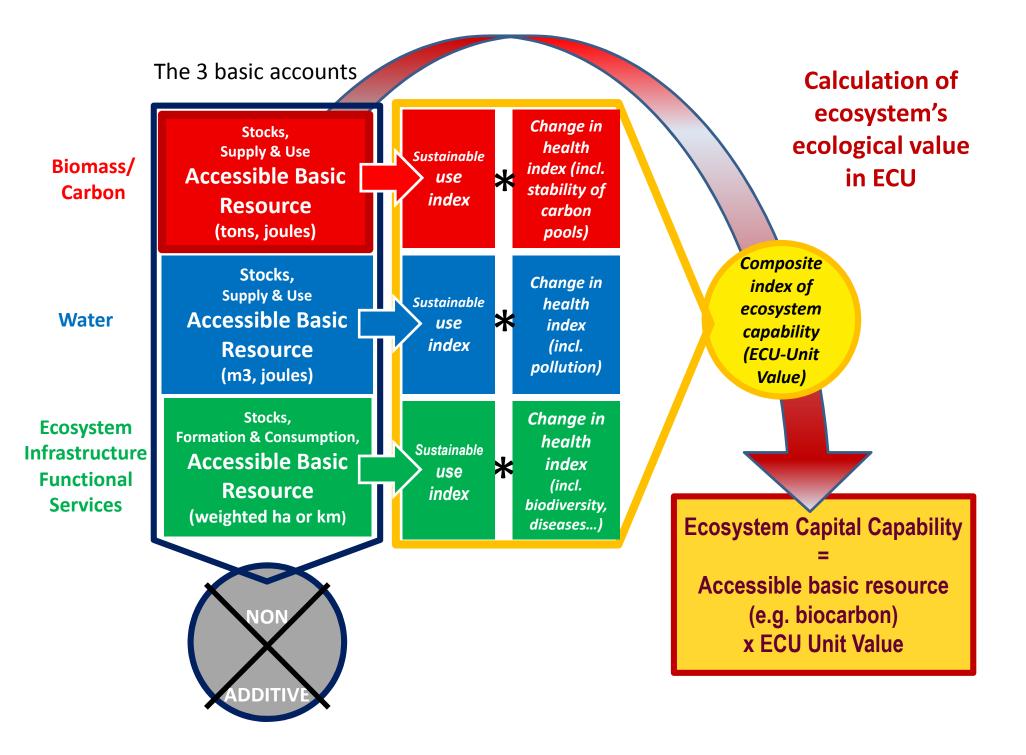
The current representation of the relation economy-nature in the SEEA and a mis-interpretation




A products based approach

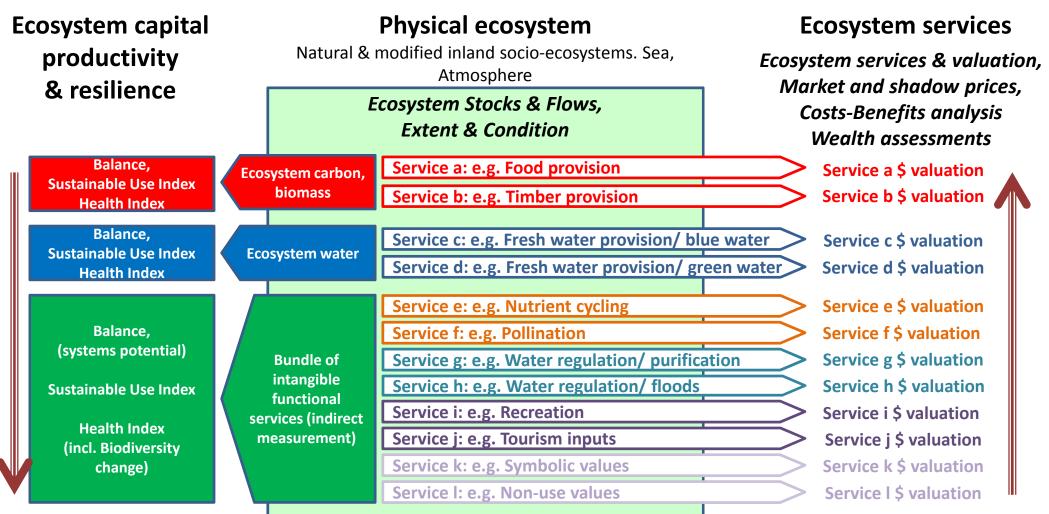


Source: Richard Mount, Australian Bureau of Meteorology, 2012



2.34 The coverage of assets is limited to those assets which are **subject to ownership rights** and **from which economic benefits may be derived by their owners** by **holding them or using them in an economic activity** as defined in the SNA. Consumer durables, human capital and those natural resources that are not capable of bringing economic benefits to their owners are outside the scope of assets in the SNA.

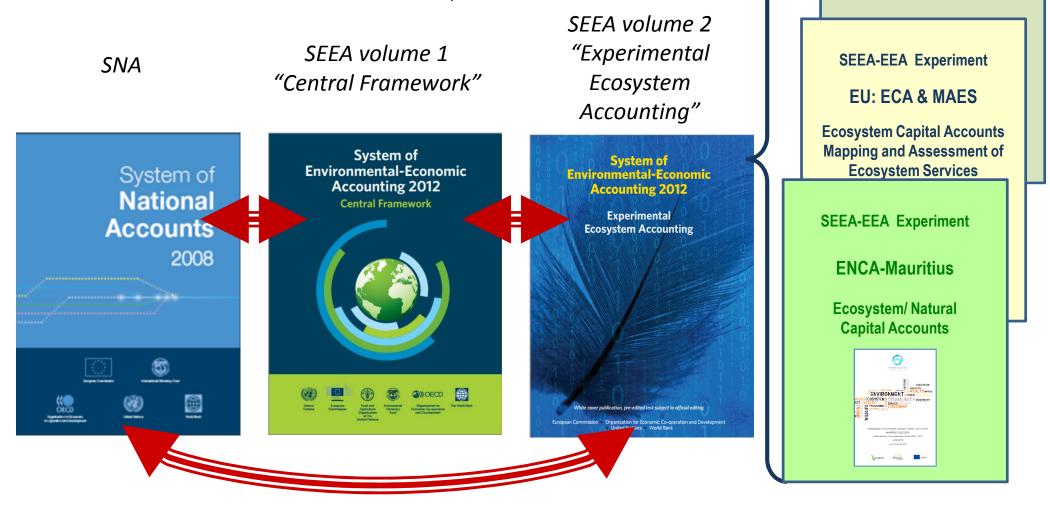
Need of a common unit for accounting


- Without a common unit, accounts aggregation is not possible.
- Simple physical units don't do the job...
- Climate change: CO₂-equivalents to measure contributions to global warming
- Green Growth: tons (-equivalents) to measure resource use efficiency
- Ecosystem/biodiversity: Ecosystem Capability Unit (ECU) to measure total ecosystem performance in delivering ecosystem services, now and in the future; stability, degradation or enhancement
- Ecological value (in ECU) vs. Economic value (in \$)

About the meaning of ECU values...

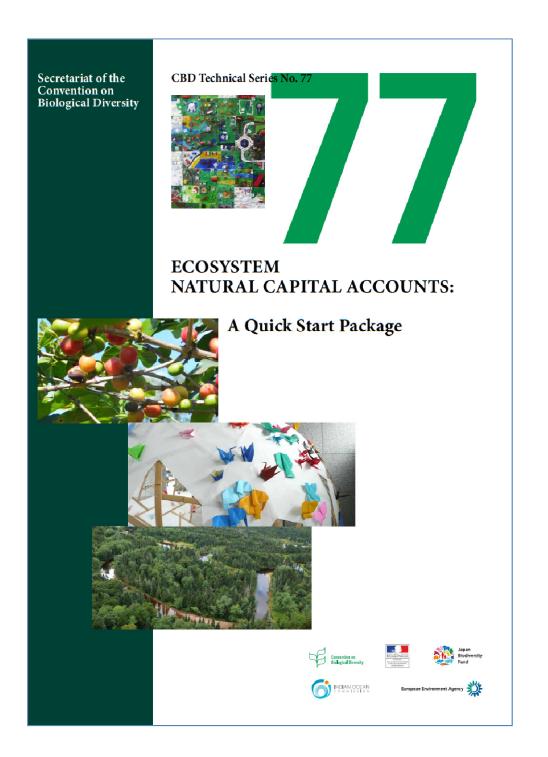
• A simplified model

Two possible approaches to ecosystem accounting


Total Ecosystem Capability

(in physical unit-equivalent) Degradation / Enhancement

Integrity of ecosystem structures & functions (public goods) Sustainability of ecosystem services delivery Maintenance, Restoration, Ecological Taxes, Mitigation banking/ Offset Certificates , PES...


International statistical context: SNA and SEEA volumes 1 & 2

The System of Environmental-Economic Accounts "Central Framework" (SEEA-CF) adopted by the UN Statistical Commission in 2012 as an international statistical standard on par with the System of National Accounts (SNA 2008). 12) has been supplemented in 2013 by a volume on "Experimental Ecosystem Accounting" (SEEA-EEA). While the SEEA-CF is recommended for implementation, the SEEA-EEA which is a conceptual framework is now tested in various projects for which additional methodologies need to be defined. The CBD TS77 ENCA-QSP is a contribution to the development of such tests.

SEEA-EEA Experiment

XXX

"In 2010, Parties to the CBD adopted Aichi Biodiversity Target 2, which calls for incorporating, as appropriate and by 2020 at the latest, biodiversity values into national accounting. This target is crucial to implementing the Strategic Plan for Biodiversity 2011-2020 and thereby addressing the underlying causes of biodiversity loss, in order to achieve its vision that "by 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people".

This edition of the CBD Secretariat's Technical Series n°77 "Ecosystem Natural Capital Accounts: A Quick Start Package" provides the technical nuts and bolts for getting started in implementing this goal. Using existing data, countries can begin ecosystem accounting in accordance with the rules of national accounting and biodiversity data and indicators."

FOREWORD

Braulio Ferreira de Souza Dias Executive Secretary, Convention on Biological Diversity **CBD Technical Series No. 77**

ECOSYSTEM NATURAL CAPITAL ACCOUNTS: A QUICK START PACKAGE

For implementing Aichi Biodiversity Target 2 on Integration of Biodiversity Values in National Accounting Systems in the context of the SEEA Experimental Ecosystem Accounts

> This document has been prepared in 2014 for the Secretariat of the Convention on Biological Diversity (SCBD) by Jean-Louis Weber (independent consultant)

ENCA: a Quick Start Package

- Meet an urgency
- Focus on core accounts in physical units and calculation of ecosystem capability and degradation or enhancement.
- Fast track implementation with existing data; learning by doing
- First test accounts:
 - ➔ involvement of producers, data holders and stakeholder.
 - ➔ policy relevance of results discussed with stakeholders.
 - ➔ identification of data gaps and framing of an action plan for regular implementation
- In the last chapter, further steps are described : liability of economic sectors and ecological balance-sheet, restoration costs, valuation of services...

0. INTRODUCTION

"Because national accounts are based on financial transactions, they account for nothing in nature, to which we don't owe anything in terms of payments but to which we owe everything in terms of livelihood" Bertrand de Jouvenel, Arcadie, 1968

0.1 THE CONTEXT

0.01 This report aims to contribute to the process of testing the System of Economic and Environmental Accounts – Experimental Ecosystem Accounts (SEEA-EEA) endorsed by the UN Statistical Commission in 2013. The publication of SEEA-EEA was an important first step towards accounting for ecosystems, their services and resilience, which to a large extent depend on biodiversity. This volume intends to provide further practical guidance, motivated by the requirements of the Strategic Plan for Biodiversity 2011-2020 and its Aichi Targets³, which aims at integrating biodiversity into mainstream policies by 2020.

0.02 Goal A of the Strategic Plan seeks to address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society, and Aichi Biodiversity Target 2, under this goal, reads as follows: "By 2020, at the latest, biodiversity values have been integrated into national and local development and poverty reduction strategies and planning processes and are being incorporated into national accounting, as appropriate, and reporting systems".¹

0.03 These goals and targets reflect the Convention's ecosystem approach, "a strategy for the integrated

4 These important CBD targets have been endorsed by the United Nations General Assembly's Open Working Group on Sustainable Development Goals at its last meeting, 19 July 2014. (para. 0.24) management of land, water and living resources that promotes conservation and sustainable use in an equilable way", recognizing that "humans, with their cultural diversity, are an integral component of many ecosystems".

0.04 The revision of the System of Economic and Environmental Accounts (SEEA 2003), agreed in 2007 by the UN Statistical Commission, led to the creation of an international statistical standard for accounts for which sufficient experience exists. In 2008, the UN Statistical Commission decided to supplement the standard accounts, now called the SEEA Central Framework ⁵, with a second volume on Experimental Econstrem Accounts.

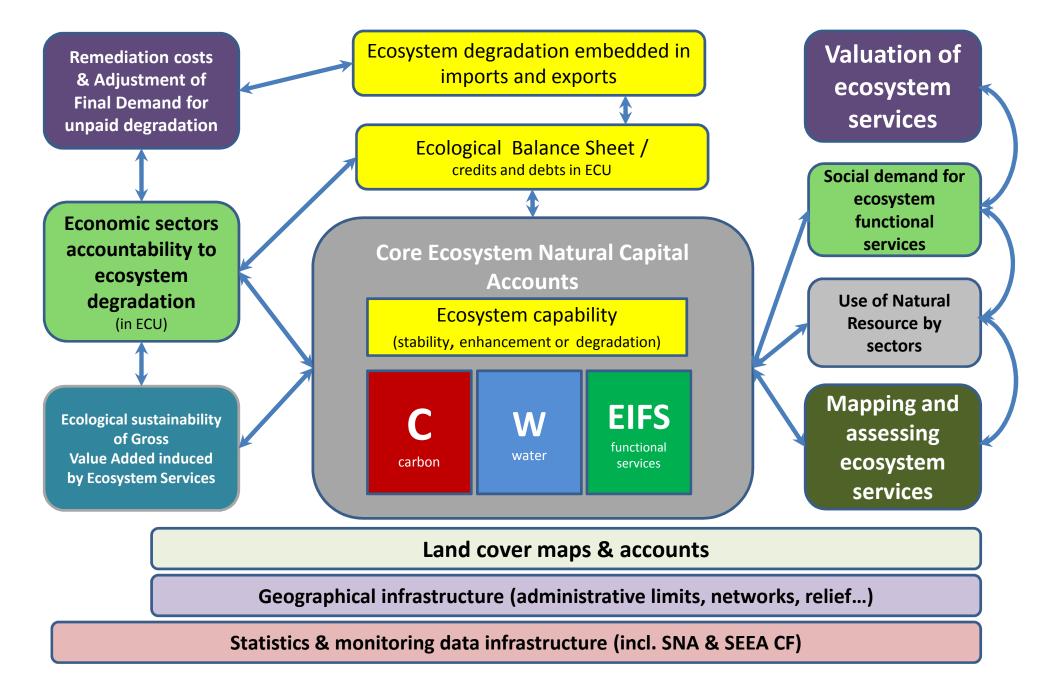
0.05 The 2012 SEEA Central Framework represents an international statistical standard on a par with the Systems of National Accounts (SNA), which do not cover accounting for ecosystems. The Central Framework covers physical resource flows, natural assets and their depletion (physical and monetary), and expenditure on environmental protection and resource management. "Accounting for degradation and other measurement topics associated with cosystems are not covered in the SEEA Central Framework. The relevant material is discussed in SEEA Experimental Ecosystem Accounts" ⁶.

5 SEEA 2012 Central Framework: http://unstats.um.org/unsd/ envaccounting/seeaRev/SEEA_CF_Final_en.pdf (accessed 21 July 2014).

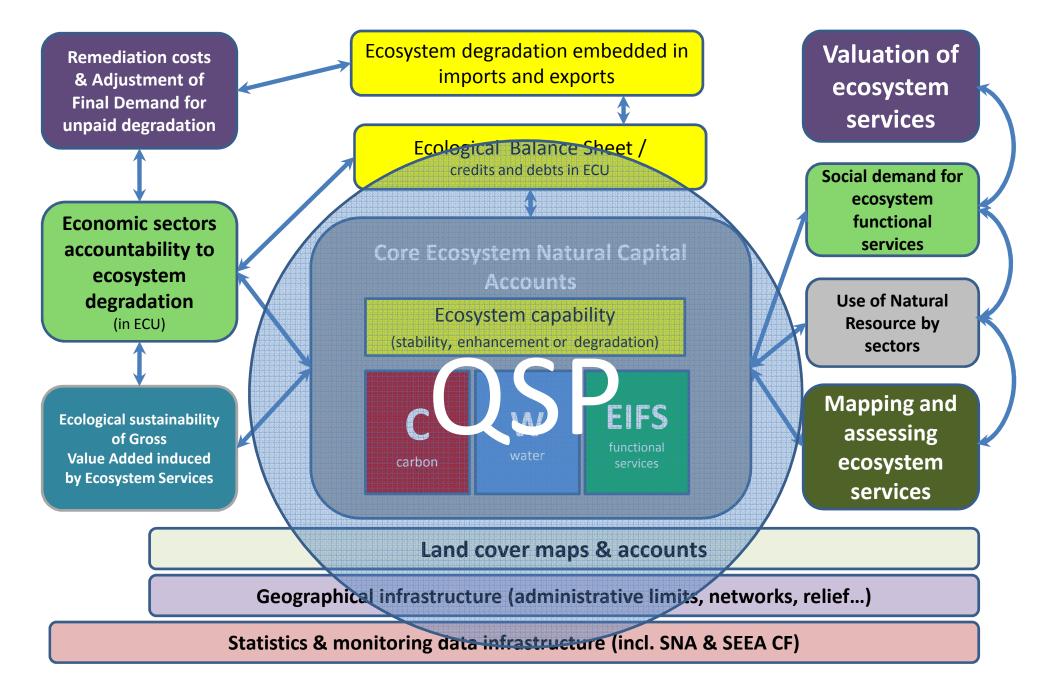
SEEA-Central Framework, op. cit. para. 14

Comptes du Patrimoine Naturel [Natural Patrimony Accounts] (France, 1986)

ENCA-QSP inherits from the SEEA & from other related accounting projects


> Experimental ENCA, Mauritius Case Study (2014)

BERCHOLE NATI ENVIRO PEOPLE ECOSYSTEM EDITINE	SERVICE DIVERSITY
	OYSIEMS NATURAL CANTAL ACCOUNTS MARITUS CASE STUDY y and prefiminary results 2000 - 2010 June 2014 Jean-Louis Weber
SURIUS	STATISTICS


ECOSYSTEM NATURAL CAPITAL ACCOUNTS: A Quick Start Package 11

³ CBD Aichi Biodiversity Targets: http://www.cbd.int/sp/targets (accessed 21 July 2014).

Structure of Ecosystem Natural Capital Accounts

Structure of Ecosystem Natural Capital Accounts

The land cover account

Land Cover Ecosystem Classes (LCEU)	01	02	03	04	05	06	07	08	09	10	11	12	13	14		
Land cover stocks and flows	Urban and associated developed areas	Homogeneous herbaceous cropland	Agriculture plantations, permanent crops	Agriculture associations and mosaics	Pastures and natural grassland	Forest tree cover	Shrubland, bushland, heathland	Sparsely vegetated areas	Natural vegetation associations and mosaics	Barren land	Permanent snow and glaciers	Open wetlands	Inland water bodies	Coastal water bodies and inter-tidal areas	Sea (interface with land)	TOTAL
I. Opening Stock																
Opening stock																
II. Formation of land cover																
F_lf1 Artificial development																
F_lf2 Agriculture development																
F_lf3 Internal conversions, rotations																
F_lf4 Management and alteration of forested land																
F_If5 Restoration and development of habitats																
F_lf6 Changes of land-cover due to natural and multiple causes																
F_If7 Other land cover changes n.e.c. and reclassification																
Total formation of land cover																
III. Consumption of land cover																
C_If1 Artificial development																
C_If2 Agriculture development																
C_If3 Internal conversions, rotations																
C_If4 Management and alteration of forested land																
C_If5 Restoration and development of habitats																
C_If6 Changes of land-cover due to natural and multiple causes																
C_If7 Other land cover changes n.e.c. and reclassification																
Total consumption of land cover																
Net change in land cover (formation - consumption)																
No change																
IV. Closing Stock																
Closing stock																

Simplified classifications of land cover types and land cover flows, to be detailed according to national/local conditions

Land co	over types
01	Urban and associated developed areas
02	Homogeneous herbaceous cropland
03	Agriculture plantations, permanent crops
04	Agriculture associations and mosaics
05	Pastures and natural grassland
06	Forest tree cover
07	Shrubland, bushland, heathland
08	Sparsely vegetated areas
09	Natural vegetation associations and mosaics
10	Barren land
11	Permanent snow and glaciers
12	Open wetlands
13	Inland water bodies
14	Coastal water bodies and inter-tidal areas
	Sea (interface with land)

Land c	over flows									
lf1	Artificial development									
lf2	Agriculture extension									
lf3	Internal conversions, rotations									
lf4	Management and alteration of forested land									
lf5	Restoration and development of habitats									
lf6	Changes of land-cover due to natural and multiple causes									
lf7	Other land cover changes n.e.c. and reclassification									
lfO	No observed land-cover change									

Land cover flows regroup elementary changes according to land use and natural processes

Ecosystem carbon account

Accounts	Main items	Typical indicators
I. Ecosystem Carbon Basic Balance	Stocks Primary and secondary production of biocarbon Withdrawals Natural perturbations	Total inflow of biocarbon Net Ecosystem Carbon Balance
II. Accessible Resource Surplus	Total inflow of biocarbon Accessible stock carried over Restrictions of use Other accessibility corrections	Net Accessible Resource Surplus
III. Total Uses of Ecosystem Bio and Geo-Carbon	Total use of biocarbon Imports/biocarbon commodites contents Imports/ embedded biocarbon Direct use of fossil carbon Fossil carbon embedded into commodites	Direct use of biocarbon Biocarbon requirement Total carbon requirement
IV. Table of Indexes of Intensity of Use and Ecosystem Health	Sustainable intensity of ecosystem carbon use Composite ecosystem biocarbon health index	Biocarbon ecological internal unit value

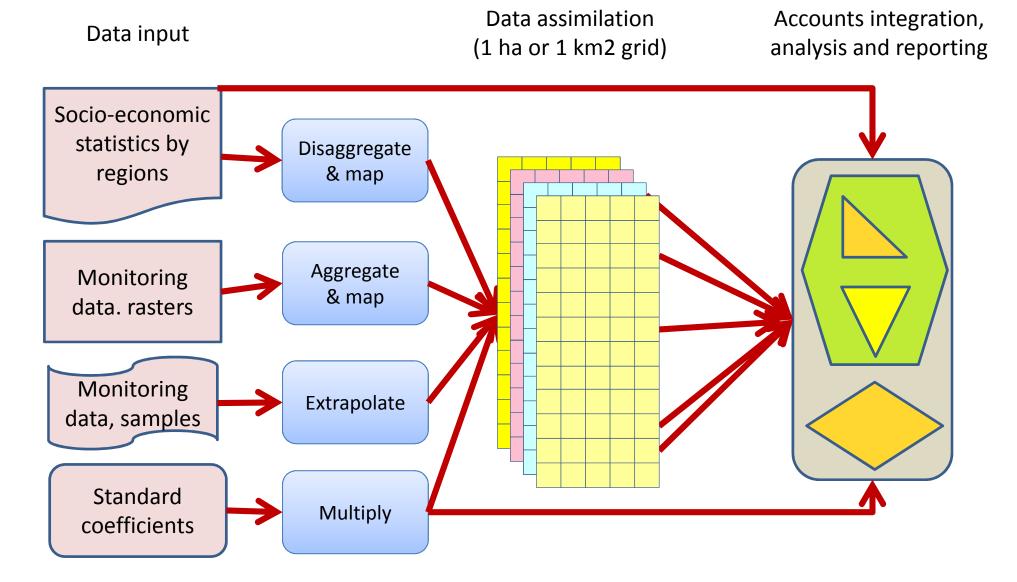
Ecosystem water resource account

Accounts	Main items	Typical indicators
I. Ecosystem Water Basic Balance	Stocks Primary and secondary production of water Transfers between water bodies and basins Actual Evapotranspiration Abstraction of water, supply and use Returns to waste water and losses	Total inflow of water Net Ecosystem Water Balance
II. Accessible Resource Surplus	Total renewable water resources Accessible stock carried over Restrictions of use Other accessibility corrections	Net Accessible Water Resource Surplus
III. Total Uses of Water	Total use of ecosystem water: blues, grey & green water Imports/water commodities contents Imports/ embedded water	Total use of ecosystem water Direct use of water Total water requirement
IV. Table of Indexes of Intensity of Use and Ecosystem Health	Sustainable intensity of ecosystem water use Composite ecosystem water health index	Water internal ecological unit value

Ecosystem infrastructure functional services account

Accounts	Main items	Typical indicators
I. Basic Balances I.1 Basic land cover account I.2 Basic river account	Stocks of land cover (km²) Formation & Consumption of land cover Stocks of rivers (SRMU) Change in rivers stocks	Net change/ land cover Net change/ river systems
II. Accessible ecosystem infrastructure potential	Stocks of Landscape Ecosystem Potential Stocks of River Ecosystem Potential Total Ecosystem Infrastructure Potential	Change in LEP Change in REP Change in TEIP
III. Overall access to ecosystem infrastructure potential	Population local access to TEIP Agriculture local access to TEIP Nature conservation local access to TEIP Basin access to water regulating services Regional access to TEIP [tourism] Global nature conservation access to TEIP	Change in access to key ecosystem infrastructure functional services
IV. Table of Indexes of Intensity of Use and Ecosystem Health	Ecosystem infrastructure intensity of use index Composite ecosystem infrastructure health index	Annual change in ecosystem infrastructure services ecological internal unit value

Ecosystem capability account, creation of ecological debts & credits


			[C]	[W]	[EIP]	[ECC]
		YEAR (2)	Biomass/ Carbon	Water	Ecosystem infrastructure potential	Ecosystem Capital Capability
		t or j	m ³ or j	Weighted ha_or_km	NA	
	EC1	1270	1980	2331		
Accessible Basic	EC212	1 Change due to Use of Accessible Basic Resources	90	-30	-11	NA
Resources	EC212	2 Other Change due to Natural & Multiple Causes	-60	50	0	NA
Resources	EC21	Total Change in Basic Resource Accessibility	30	20	-11	NA
	EC2	Net Accessible Ecosystem Resources, year (t) (NEACS, NEAWS & Net Ecosystem Infrastructure Potential)	1300	2000	2320	NA
Use of ecosystem resource	EC3	Use of ecosystem resource	1210	2030	2331	NA
		Ecosystem Capability Account	ECU	ECU	ECU	ECU
	EC4	Mean ECU unit value of Accessible Resources & Ecosystem Capital Capability in year (t-1)		0.9	63	
	EC512	Indexes of sustainable intensity of resource use [IF<1, = overuse, dilapidation; IF>1, accumulation]	1.074	0.985	0.995	NA
Calculation of unit	EC512	2 Indexes of change in ecosystem health [IF<1, = deterioration; IF>1, improvement]	0.910	0.960	0.950	NA
values in ECU	EC51	Annual change in accessible resources internal unit values & change of ECU unit value	0.992	0.973	0.973	0.979
	EC5	Mean ECU unit value of Accessible Resources & Ecosystem Capital Capability in year (t) [EC5 = EC4 x EC51_ECC]		0.9	43	
	EC6	Net Accessible Resources & Ecosystem Capital Capability, ecological value in ECU, year (t-1)	1222.7	1906.3	2244.2	1222.7
	EC7	Net Accessible Resources & Ecosystem Capital Capability, ecological value in ECU, year (t)	1225.5	1885.4	2187.0	1225.5
Accessible Resources &	EC71	Activities' Net Accumulation of Ecosystem Capital Capability, in ECU [IF<0, = degradation; IF>0, = renewal]	0.8	-22.9	-59.2	0.8
Ecosystem Capital	EC722	2 Global/continental/regional processes	1.0	1.0	1.0	1.0
Capability	EC722	2 Change caused by neighbouring/interacting ecosystems	1.0	1.0	1.0	1.0
	EC72	Change in Ecosystem Capital Capability Due to Natural and Multiple Causes, in ECU	2.0	2.0	2.0	2.0
	EC73	Total Change in Accessible Resources & Ecosystem Capital Capability, in ECU = EC7-EC6	2.8	-20.9	-57.2	2.8
	EC81 = EC71	Activities' Net Accumulation of Ecosystem Capital Capability, in ECU [IF<0, = degradation; IF>0, = renewal]	0.8	-22.9	-57.2	0.8
	EC822	1 Indirect change caused, Global/continental/regional processes	-3.0	-2.0	-4.0	-3.0
Creation of Ecological	EC822	2 Change caused to neighbouring/interacting ecosystems	-1.0	-10.0	-15.0	-1.0
Debts & Credits	EC82	Net Change Caused to Other Ecosystems' Capability, in ECU [degradation (-) or enhancement (+)]	-4.0	-12.0	-19.0	-4.0
	EC8	Creation of New Ecological Debts & Credits (in ECU) [direct & indirect ecosystem degradation or renewal]	-3.2	-34.9	-78.2	-3.2
	EC9	Cumulated Net Balance of Ecological Debts (-) & Credits (+) in ECU (from baseline year 0)				-16.5
	•	Indexes				
	EC51	Annual change in accessible resources internal unit values & change of ECU unit value	0.992	0.505	0.498	0.665
Indovos	EC5	Mean ECU unit value of Accessible Resources & Ecosystem Capital Capability in year (t)		0.9	43	
Indexes	EC22	Index of Change in Volume of Basic Resource Accessibility = EC2/EC1	1.024	1.010	0.995	NA
	EC23	Index of Change in Ecological Value of Ecosystem Capital Capability =EC22xEC5	0.965	0.952	0.938	0.965

Ecological balance sheet in ECU

	Domestic physical assets	Ecological credits	Ecological debts	Net Ecological Worth
	[a]	[b]	[c]	= [b]-[c]
I - Short term assets and liabilities				
Opening balance sheet/ short term	100	100		100
Degradation by activities	-12		12	-12
Natural losses	-9	-9		-9
Restoration from previous degradation	2		-2	2
Ecosystem creation/ enhancement	7	7		7
Natural gains	4	4		4
Net change in short term assets and liabilities	-8	2	10	-8
Closing balance sheet/ short term	92	102	10	92
II - Long term assets and liabilities				
Ecosystem restoration commitments		50	50	0
Accumulated ecological credits/ allocations		13		13
Accumulated ecological debts			35	-35
Opening balance sheet/ long term		63	85	-22
Change in ecosystem restoration commitments		0	0	0
Change in accumulated ecological credits/ allocations		8		8
Change in accumulated ecological debts			11	-11
Net change in longterm assets and liabilities		8	11	-3
Ecosystem restoration commitments		50	50	0
Accumulated ecological credits/ allocations		21		21
Accumulated ecological debts			46	-46
Closing balance sheet/ long term		71	96	-25
III - International liabilities				
Opening balance sheet/ Embedded ecosystem degradation			30	-30
Accquisition of embedded ecosystem degradation			15	-15
Compensation of embedded ecosystem degradation			-5	5
Net change in ecosystem degradation embedded in trade			10	-10
Closing balance sheet/ Embedded ecosystem degradation			40	-40
Consolidated balance sheet (I + II + III)				
Opening balance sheet	100	163	115	48
Net change	-8	10	31	-21
Closing balance sheet	92	173	146	27

Spatial Integration of Environmental & Socio-Economic Data Mapping Socio-Economic **Statistics** Sampling Individual Sites Monitoring

Main data flows to compile ecosystem capital accounts

Norgaard, 1998, about "THE" Constanza paper of 1997 in Ecological Economics 25 (1998) 37-39

- As our title suggests, one response was certainly that some things perhaps should not be expressed in monetary terms. Will ecological economists bring us the value of God next? And will this be the end of history for economic valuation? Or, now that we know the exchange value of the earth, we wondered with whom we might exchange it and what we might be able to do with the money, sans Earth.
- More technical arguments:
 - First, there was concern that the specific services that were valued could not be separated from each other and valued individually. Such an atomistic approach defies our understanding of ecosystems as tightly interlocked systems, coevolving systems
 - Second, we were concerned about deriving values using prices from an economic system far from environmental sustainability.
 - Third, we pondered the broader significance of using partial equilibrium valuation techniques to look at a total system.
 - Fourth, we worried about using marginal values when the total collapse of some services seemed not only plausible but the driving concern.
 - And, fifth, we discussed the issues around whose values these were in a world of very rich and very poor; some powerful, most not; and dominated by western ideas yet also apparently reculturalizing.

And ultimately, a discussion on how far scientists can go to attract the media's attention

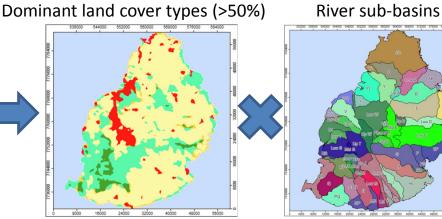
<u>Utilitarian</u> vs. <u>Systemic</u> approaches of the capital(s)

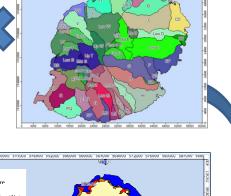
- Shadow prices: substitutability of all capital assets
- Is the conservation of total or inclusive monetary value of all capitals a measurement of sustainability?
- Weak versus Strong sustainability

Ecosystem, economy & finance, two quotations and a few remarks...

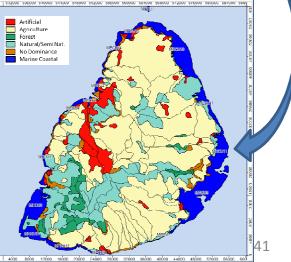
- <u>Bertrand de Jouvenel, 1968</u>: "Because National Accounts are based on financial transactions, they account nothing for Nature, to which we don't owe anything in terms of payments but to which we owe everything in terms of livelihood."
- <u>Wikipedia</u>: "Finance aims to price assets based on their risk level, and expected rate of return."
- We certainly owe nothing (in terms of payments) to Nature, but by degrading biodiversity and the ecosystem capability to produce ecosystem services, we create debts to Nature which are debts towards future generations who lose services or/and will have to restore the ecosystem...
- We create as well debts to the present (and future) generations of those who supply us with commodities obtained by degrading their ecosystem (altogether as the capability of their human capital; see the "fair trade" paradigm...).
- Unlike debts between human which can be repaid or cancelled by mutual agreement, debts to Nature can only be extinct or offset (if possible) by restoration of equivalent ecosystem functions, whatever the monetary cost...
- Ecosystem capital degradation is an unpaid depreciation cost = we don't pay the full cost of our consumption.
- Ecological debts increase the risk level of debtors, public and private; they should be part altogether with private and public conventional debts, of the overall portfolio...
- Ecological debts should be **taken into account(s)** in the international financial and monetary system

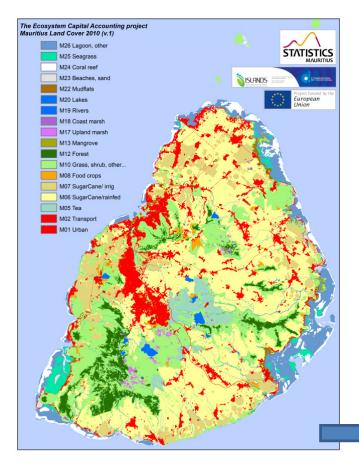
The ultimate goal of ecosystem capital accounts (ENCA) is to <u>measure ecological debts</u> (and credits, when ecosystems are enhanced) so that they can be taken into operational mechanisms...


SEEA-ENCA Mauritius preliminary results :

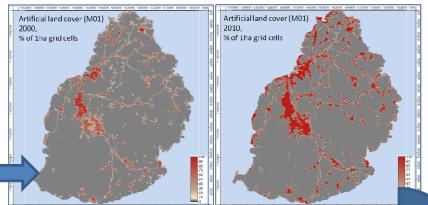


The Ecosystem Capital Accounting project Mauritius Land Cover 2010 (v.1) M26 Lagoon, other STATISTICS MAURITIUS M25 Seagrass M24 Coral reef M23 Beaches, sand 💧 ISLANDS 📰 M22 Mudflats M20 Lakes European M19 Rivers M18 Coast marsh M17 Upland marsh M13 Mangrove M12 Forest M10 Grass, shrub, other ... M08 Food crops M07 SugarCane/ irrig M06 SugarCane/rainfed M05 Tea M02 Transport M01 Urban


A land cover map has been produced from the start for:

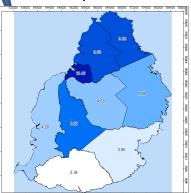

- Defining statistical units for accounting (EAU) and 1.
- Computing the land cover account (next slide) 2.

Socio-ecological landscape units (SELU) Marine Coastal Units (MCU)



SEEA-ENCA Mauritius preliminary results : Land cover and change from 2000 to 2010

The land cover data are stored using geographical datasets which use grids (10m x 10m and 100m x 100m) at the most detailed level.


Urban land cover 2000 & 2010

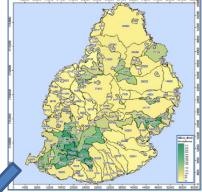
2000 2010 km2

These grids allow computing statistics and producing ecosystems/natural capital accounts for various statistical units such as municipal and village council areas, districts, coastal zones, river basins, socioecological landscape units and any relevant zoning.

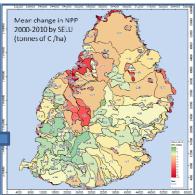
Urban sprawl 2000-2010 by Districts

Land cover stock and change account/ urban sprawl

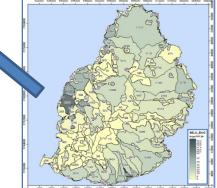
Land cover stock and change acco	unt/ urb	an sprav	VI					2000 20	<u>)то - кш</u>	۷	_
Provisional	Rivière du Rempart	Pamplemousses	Flacq	Moka	Grand Port	Plaines Wilhems	Black River	Savanne	PortLouis	TOTAL	
District AREA SQKM	14703	18019	29826	23512	26134	19839	25558	24758	3976	186325	
M01 Urban land cover 2000 v0	747	705	405	282	406	2060	334	266	2667	7872	
M01 Urban land cover 2000 v1, adjusted	1225	1172	667	510	549	2456	542	379	3284	10782	
lf1 Urban sprawl	478	467	263	228	143	396	208	112	616	2911	
M01 Urban land cover 2010	1704	1639	930	738	691	2852	749	491	3900	13693	


SEEA-ENCA Mauritius preliminary results : The biomass-carbon account

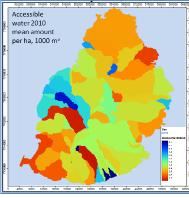
Carbon Accounts show the capacity of the ecosystems to produce biomass and the way it is used by crops harvests and trees removal or sometimes sterilised by artificial developments or destroyed by soil erosion or forest fires (in line with IPCC guidelines).

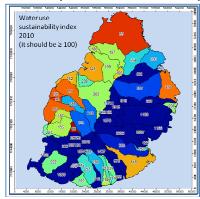

Accounts are compiled using various sources such as products based on earth observation by satellite (e.g. MODIS NPP), on in situ monitoring (for IPCC-LULUCF, FAO/soil, FRA2010) and official statistics .

Simplified bio-carbon accounts by district	ts, 2010								Tons of ca	arbon	
Provisional 2010	Riviere du Rempart	Pamplemousses	Flacq	Moka	Grand Port	Plaines Wilhems	Black River	Savanne	Port Louis	Tot	
Initial stock 2010	1457955	2101934	4135543	4165122	2855365	3327114	3173857	3196601	432317	24845800	
Woody biomass	873403	1137222	2068571	1744337	1796040	1643485	2224653	2409579	265193	14162483	
Topsoil organic carbon	584551	964712	2066972	2420785	1059325	1683629	949204	787022	167124	10683324	
Flows/inputs	335582	417954	819601	675923	736068	454057	642970	739278	68922	4890354	
Net Primary Production	335582	417954	819601	675923	736068	454057	642970	739278	68922	4890354	6-
Flows/outputs and decrease	349143	448659	870542	708508	725853	481532	650835	744290	74976	5054339	
Removals, harvests	65446	90345	108405	56498	90172	35596	87914	81900	1698	617974	
Wood removals										0	
Sugarcane	63718	86585	104230	52531	87208	31984	83773	80223	912	591165	L
Food crops	1727	3759	4175	3656	2918	3565	4141	1633	786	263	
Other cops	0	0	0	311	46	46	0	44	0	447	
Decrease due to land use change	4102	4761	5762	3629	3240	5216	2881	2290	1388	33269	
Other decrease (fire, erosion)	14580	21019	41355	41651	28554	33271	31739	31966	4323	248458	
Soil/decomposers respiration v2	265016	332534	715020	606730	603888	407449	528301	628133	67567	4154638	
Net Ecosystem Carbon Balance 1 (flows)	-13562	-30705	-50941	-32585	10215	-27475	-7865	-5012	-6054	-163985	
Statistical adjustment	16597	28379	33235	15034	-29421	11163	-19714	-15632	6178	45819	
Net Ecosystem Carbon Balance 2 (stocks)	3035	-2326	-17706	-17551	-19206	-16312	-27579	-20644	123	-118166	
Final Stock 2010	1460990	2099608	4117837	4147571	2836159	3310802	3146278	3175957	432440	24727642	
Woody biomass	876438	1134896	2050865	1726786	1776835	1627173	2197074	2388935	265316	14044318	
Topsoil organic carbon	584551	964712	2066972	2420785	1059325	1683629	949204	787022	167124	10683324	
Net accessible bio-carbon resource 2010	73600	83094	86875	51642	112974	30296	87089	90500	1479	617550	
Change in stocks in the previous year	3035	-2326	-17706	-17551	-19206	-16312	-27579	-20644	123	-118166	
Flows/inputs (+)	335582	417954	819601	675923	736068	454057	642970	739278	68922	4890354	
Soil/decomposers respiration v2 (-)	265016	332534	715020	606730	603888	407449	528301	628133	67567	4154638	
Index of intensity of use of bio-carbon 2010	112	92	80	91	125	85	99	111	87	100	


Woody biomass/ tons of C

Change in NPP/ tons of C


Sugar cane harvest/ tons of C


SEEA-ENCA Mauritius preliminary results : The ecosystem water account

The ecosystem water accounts follows the SEEA Water methodology and use preliminary results of the national water accounts. They are detailed by river basins and sub-basins where the hydrological system can be described consistently. Stocks of water are mainly aquifers and lakes/reservoirs, which play important role in Mauritius. Data have provided by the meteorological and water agencies. Water use by sub-basins is estimated from population census data and irrigation map. Satellite products have been used for evapotranspiration. The outcome is the calculation of the water really accessible for use and of an index of stress from water use intensity.

Accessible water, mean amount by ha, 10³ m³

Water use intensity stress index (stress when <100)

Simplified water accounts by Districts, 2	2010									Mm3
Provisional 2010	Rviere du Rennart	Pantdenousses	Pace	Mole	Gandpar	Plaines Willierts	Black River	Shame	PortLouis	Total
AREA_ha	14703	18019	29826	23512	26134	19839	25558	24758	3976	186325
Boreholes_nb	105 35	164 20	100 150	83 150	110 100	146 100	131 80	30 100	12 20	881 755
River runoff districts coeff Lake 2010 ha	35	103	150	468	100	511	109	100	20	1251
Stocks	3345	5231	3189	2681	3510	4687	4183	961	383	28170
Aguifers	3343	5222	3184	2643	3503	4649	4171	955	382	28052
Lakes/reservoirs	0	7	0	32	3	35	7	1	0	86
Rivers	2	2	5	6	5	3	4	4	1	32
Soil/vegetation	_	-	5		5	5			-	52
Net Inflows	75	176	292	342	355	293	155	353	12	2052
Rainfall	173	236	579	633	629	484	302	603	49	3688
EvapoTranspitation (actual), total	155	199	367	290	338	224	308	326	40	2247
EvapoTranspitation (actual), spontaneous	109	115	310	268	294	207	167	269	40	1779
Net transfers surface - groundwater	11	14	23	18	20	15	20	19	3	143
Transfers between basins		41		-41						0
Abstraction and Uses	63	109	80	36	63	83	152	69	23	678
Municipal Water Production	17	23	23	13	18	64	11	11	22	202
Use of water	8	12	11	7	9	32	5	6	11	101
Loss of water in distribution	8	12	11	7	9	32	5	6	11	101
Irrigation	46	85	57	22	44	17	141	57	0	468
Other	1	1	1	1	1	3	0	0	1	8
Waste water to rivers	6	8	8	5	6	22	4	4	8	70
Outflow to the sea	78	46	324	318	217	212	172	213	50	1632
Rivers runoff	74	42	318	318	212	212	170	212	42	1602
Waste water to the sea	4	4	6	0	5	0	2	1	8	30
Induced ETA, Evaporation	46	85	57	22	44	17	141	57	0	468
Net Flows	-103	-52	-156	-29	41	2	-304	19	-46	-626
Closing stocks	3242	5179	3034	2652	3551	4690	3879	980	337	27544
Accessible renewable water	83	124	217	200	219	187	228	213	36	1507
Water use intensity (1): Average/ha	132	114	270	561	345	224	150	310	155	
Water use intensity (2): 1st decile	90	90	118	203	148	114	110	222	143	

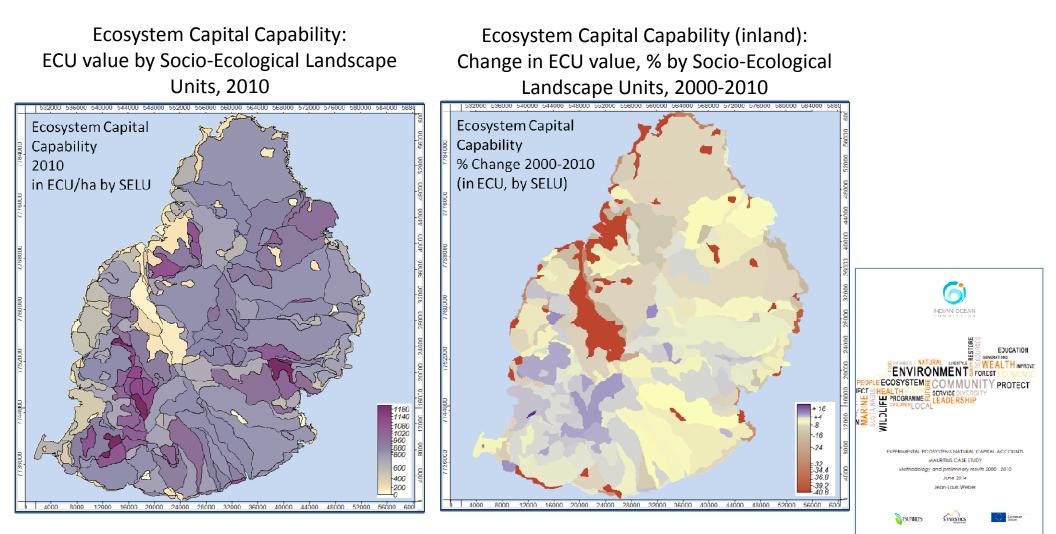
44

SEEA-ENCA Mauritius preliminary results :

The functional services account (depending from integrity and biodiversity)

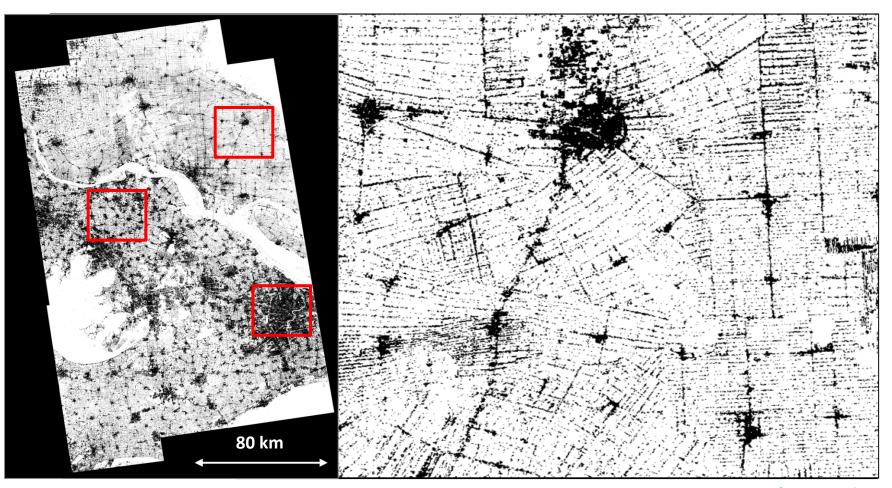

Information Associate

The biodiversity of systems and species account is made of two accounts which describe the state of ecosystems green infrastructure (landscapes, rivers and sea coastal zones) on the one hand and changes in species biodiversity on the other hand.


The NLEP index combines the green character of ecosystems and their fragmentation by roads which may alter their good functioning. Land cover is then weighted with NLEP. Highest NLEP values can be found where forests, shrubs, grass and natural habitats are predominant, in particular in mountainous and land coastal areas. Low NLEP values correspond to urbanised areas and intermediate score reflect agriculture dominated catchments.

Green Infrastructure Accounts										
Provisional	Riviere du Rempart	Pamplemousses	Flacq	Moka	Grand Port	Plaines Wilhems	Black River	Savanne	Port Louis	Total / Mean values
AREA_ha	14703	18019	29826	23512	26134	19839	25558	24758	3976	186325
Indexes (0-100 value per ha)										
GBL 2000 index	43.4	41.7	49.7	55.6	50.1	53.4	61.0	53.7	58.6	51.9
Fragmentation index	8.6	9.8	7.3	6.2	6.9	7.9	5.1	5.1	6.9	6.9
nLEP 2000 index	39.7	37.6	46.0	52.1	46.6	49.2	57.9	51.0	54.5	48.4
Green Infrastructure Account										
GBL 2000 / weighted ha	638105	751152	1481482	1307506	1309039	1060139	1559660	1330151	232911	9670145
nLEP 2000 / weighted ha	583021	677761	1373059	1226033	1218167	976061	1479992	1262700	216727	9013521
Indexes (0-100 value per ha)										
GBL 2010 index	42.0	40.6	49.2	55.1	49.8	52.4	60.5	53.5	50.7	51.1
Fragmentation index	8.6	9.8	7.3	6.2	6.9	7.9	5.1	5.1	6.9	6.9
nLEP 2010 index	38.4	36.7	45.6	51.6	46.4	48.2	57.4	50.8	47.2	47.7
Green Infrastructure Account										
GBL 2010 / weighted ha	617999	732184	1468542	1294945	1301938	1039397	1547086	1324150	201660	9527900
nLEP 2010 / weighted ha	564651	660647	1361066	1214254	1211558	956963	1468060	1257003	187648	8881851
Change in nLEP 2000-2010	-18370	-17114	-11993	-11779	-6608	-19097	-11932	-5697	-29079	-131670
Change in nLEP index % 2000-2011	-3.2	-2.5	-0.9	-1.0	-0.5	-2.0	-0.8	-0.5	-13.4	-1.5

Net Landscape Ecosystem Potential (NLEP) 2010 by SELU [a], River basins [b] and Districts [c]


A first attempt to calculate Ecosystem Capital Capability (in ECU) for Mauritius

Provisional results

Experimental ENCA, Mauritius Case Study (IOC, 2014)

Global Urban Footprint – Shanghai (China)

Urban Footprint