#### BioResources & Biodiversity 2015 Master BioSciences ENS de Lyon



*Tuesday 1 June 2015: Biodiversity, Ecosystems and economy* 

#### **Ecosystem services and the social value of Nature 2**

## **Ecosystem Natural Capital Accounts: towards an Ecological Balance-Sheet**

Jean-Louis Weber

European Environment Agency Scientific Committee Honorary Professor, School of Geography, University of Nottingham Consultant on Ecosystem Natural Capital Accounting

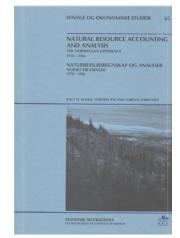
jlweber45@gmail.com

#### Outline

- 1. Principles and Framework
- 2. Presentation of ENCA-QSP
- 3. The making of ecosystem accounts and example of the Mauritius experimental accounts 2013

#### National Accounts:

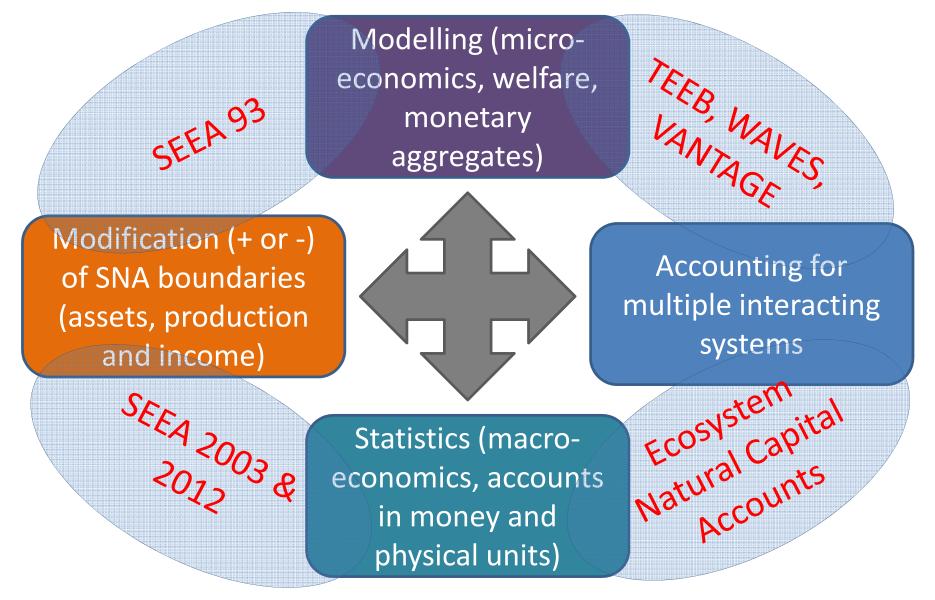
#### Recurrent demands for improved economic indicators and aggregates


- Historical pioneer "green accounting" projects: Norway, Canada, France, Philippines, Indonesia, the Netherlands, Spain...
- Rio1992, Agenda 21
- UN SEEA1993 to "adjust" the UN System of National Accounts ("Green GDP"). SEEA revised in 2003
- New SEEA revision 2012/13, including now a second volume on experimental ecosystem accounting
- Recent initiatives:
  - Beyond GDP Conference 2008
  - Potsdam 2008 G8+5 initiative and TEEB
  - Stiglitz/ Sen/ Fitoussi report on the measurement of economic performance 2009
  - World Bank's new Global Partnership for "Green Accounting" and Ecosystem Valuation (WAVES)
  - CBD Aïchi-Nagoya Strategy 2010: demand for the inclusion of biodiversity and ecosystem value into national accounts and launch of CBD TS77 on Ecosystem Natural Capital Accounts – A quick Start Package at the CBD COP12 in South Korea, 2014.
  - References to environmental accounts for measuring progress in Green Economy, Green Growth, Resource Efficiency...
  - SDG: reference to the SEEA
- In Europe:
  - Regulation on Environmental Accounting: Eurostat, the economy-environment interface and
  - Natural Capital Accounts to support the EU Biodiversity Strategy: MAES by the JRC and ECA by the EEA (ecosystem capital accounts)

### (very incomplete) history of early works...

- Peskin ("accounting for environmental services")
- Ganarsjordet, Norway ("Natural Resource Accounts")
- El Serafy, WB ("User Cost")
- Repetto, WRI ("net market values")
- Hueting, NL ("distance to target")
  - David Rapport & Tony Friend, Canada ("Stress-Response System")
    - CICPN-France ("Les Comptes du Patrimoine Naturel")
- CICPN-Espagne (Naredo, water accounts in exergy/quantity-quality)
- Hamilton, WB, ("Genuine Savings")
- SEEA 1993
- SEEA 2003

#### + IPCC guidelines










#### Multiple approaches to environmental accounting



#### The SEEA and Related Accounting Frameworks

## **SNA2008**

Policy targets/ Indicators: Macroeconomic policies, GDP, National Income, Consumption, Investment, Savings, Assets and Liabilities...

Champions: IMF, WB, OECD, EC, all governments... Material Flow Accounting (OECD-Eurostat Manual, SEEA-CF ...)

Policy targets: Resource Efficiency/ Green Growth

Champions: OECD & European Commission

IPCC guidelines ("carbon"/CO2-eq budgets), SEEA-CF

Policy targets / indicators: Global Warming Mitigation, Commitments, "carbon" Debts and Credits, and SDG

Champions: UNFCCC, IPCC, WMO, UNEP, EC

#### Natural Capital/ Ecosystem Services Economic Accounts (WAVES, VANTAGE, TEEB, SEEA-EEA...)

Policy targets/ Indicators: Valuation of natural assets, Depletion, Valuation of Ecosystem Services & Assets

**Champions: WB, UNEP** 

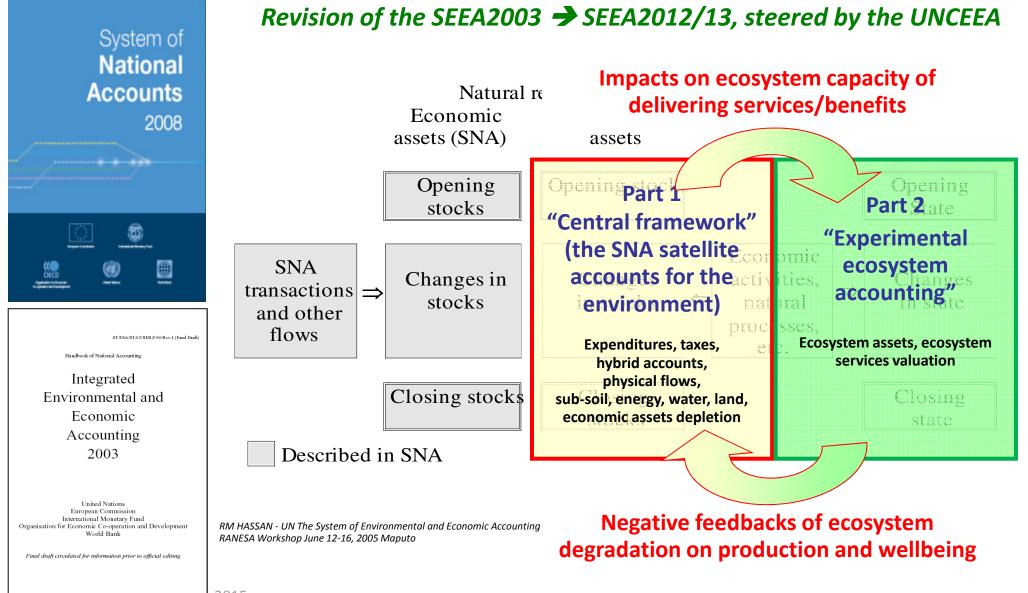
#### Ecosystem Capital Accounts (SEEA-EEA, ENCA-QSP, MAES/ECA)

Policy targets/Indicators: Ecosystem maintenance, capability, resilience & services, liability of economic sectors, ecological debts/credits, and SDG Champions: UNEP, CBD, UNDP? EC?

#### Why <u>accounting</u> for nature is important?

- Accounting = a technique to measure the "true" or net outcome of an activity, based on the <u>complete recording</u> of all entries and outcomes; double-entry accounting, cross-checking data
- Accounts' "<u>balancing items</u>" are key indicators, strictly defined and much used: profit or loss, net income, net savings, accumulation, net worth (assets minus debts)... GDP, National Income...
- Accounting <u>standards</u> allow comparisons between economic agents (International Financial Standards) and between countries (System of National Accounts) as well as the measurement of change (growth, depletion, degradation, time series...)
- <u>Accounts feed models</u> with reliable data and statistics; models outcomes can be compared to the picture of the past and presents situation given by accounts and <u>support policy making</u>
- <u>Physical accounts can be connected to the National Accounts (and to corporate, government accounts...)</u>: "carbon/CO2-eq accounts" (IPCC), "material flow accounts" (OECD Green Growth)... now ecosystem accounts

→ REMARK: Ecosystem accounts combine comprehensive and perennial base accounts with Jeamore specific and detailed assessments of hot issues


#### How are Ecosystem Services & Assets recorded in the SNA?

- <u>ES are input to production of goods and services</u>, valued at the purchase price; ES are part of an economy-nature joint production...
- <u>SNA production includes all goods produced for own account (incl. picking up berries,</u> mushrooms, deadwood etc...).
- SNA natural assets are only economic assets, <u>owned and managed for profit</u>; it includes assets owned by governments but excludes ecosystem functions that benefit to others and the public: they are not taken into account.

#### • **ISSUES:** several prices are not rightly set.

- <u>Ignored</u>: the ecosystem functions which are not economic assets are not recorded (zero price).
- <u>Incomplete</u>: unlike consumption of fixed capital, consumption of ecosystem capital is not included in purchasers' prices (because economic agents don't record it – it is for them an externality).
- <u>Values are not assigned to the right sectors because of rent extortion</u>: Value Added of agriculture is very low, partly because value of food is recorded as Value Added of Agro-food industry and trade; the Value Added of molecules "discovered" via bio-prospecting is recorded as that of Pharmaceutical Industry, not of regions of origin (the ABS paradigm...)

UN manual for environmental-economic accounting: **SEEA2012/13** On par with the System of National Accounts (SNA) since February 2012



- Jean-Louis Weber, 1 June 2015

## What is ecosystem accounting?

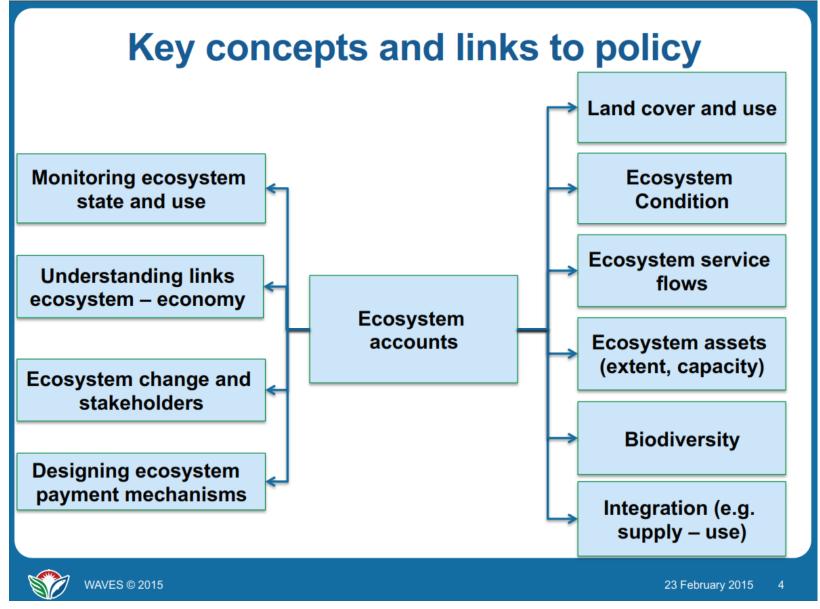
| What it is?           | <ul> <li>Spatial</li> <li>Covering all ecosystems</li> <li>Combination of ecology and national accounting</li> </ul> |                                                                                                                                                                               |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How did it happen?    | <ul> <li>Evolved over many years in academic and government agencies</li> <li>A rapidly evolving field</li> </ul>    | System of<br>National<br>Cocurs<br>DomSystem of<br>Mational<br>Cocurs<br>DomSystem<br>Cocurs<br>DomSystem<br>Cocurs<br>DomSystem<br>Cocurs<br>Dom1953199319932013196820032012 |
| Where is it happening | <ul> <li>Several countries are<br/>developing ecosystem<br/>accounts</li> </ul>                                      | 2008                                                                                                                                                                          |
| WAVES © 2014          | What is ecosystem accounting and why                                                                                 | v it is important 23 February 2015 4                                                                                                                                          |

Source: Michael Vardon's presentation at the World Bank WAVES 1<sup>st</sup> Knowledge Exchange on Ecosystem Accounting, Manila, the Philippines, 23-27 February, 2015 Jean-Louis Weber, 1<sup>st</sup> June 2015

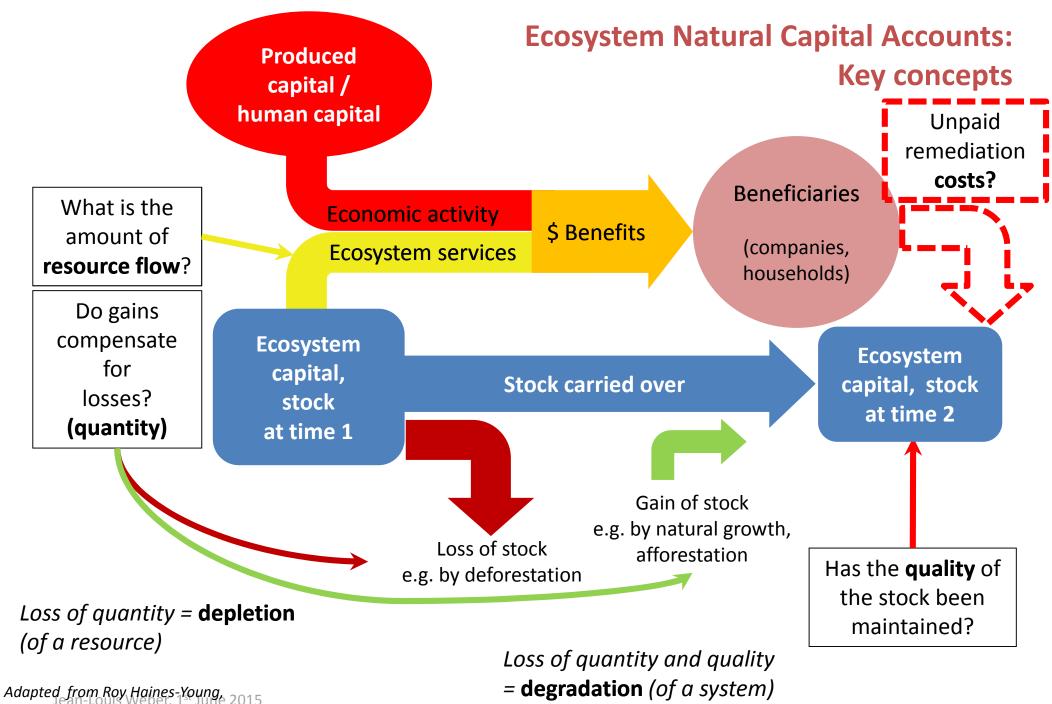
## **Example: Mauritius – Experimental Ecosystems Natural Capital Accounts 2014**



#### **Key points**


- A suite of accounts with land cover as a starting point
- It is complex but it can be done!
- Focuses on assets (e.g. natural capital) rather than services
- Learning by doing

WAVES © 2014




Source: Michael Vardon's presentation at the World Bank WAVES 1<sup>st</sup> Knowledge Exchange on Ecosystem Accounting, Manila, the Philippines, 23-27 February, 2015

Jean-Louis Weber. 1st June 2015



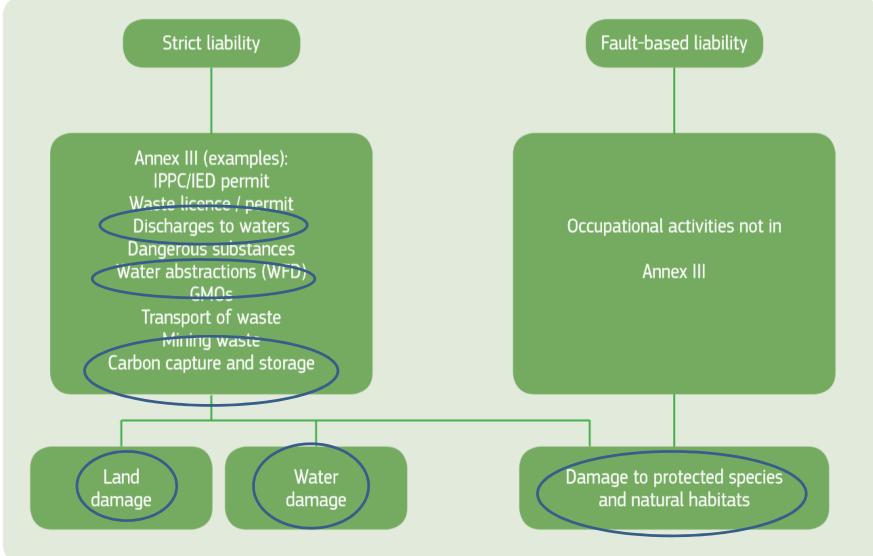
Source: Lars Hein's presentation at the World Bank WAVES 1<sup>st</sup> Knowledge Exchange on Ecosystem Accounting, Manila, the Philippines, 23-27 February, 2015



Michael Vardon and Lars Hein

#### Importance of measuring degradation

#### Example of the EU Environmental Liability Directive of 2004 (ELD2004): the "Polluter


Pays Principle" is enforced regarding environmental damages with 3 purposes:

- 1. Avoid degradation when possible
- 2. Repair or restore when 1 is not possible
- 3. Compensate the damage elsewhere for an equivalent amount when 1 and 2 are not possible

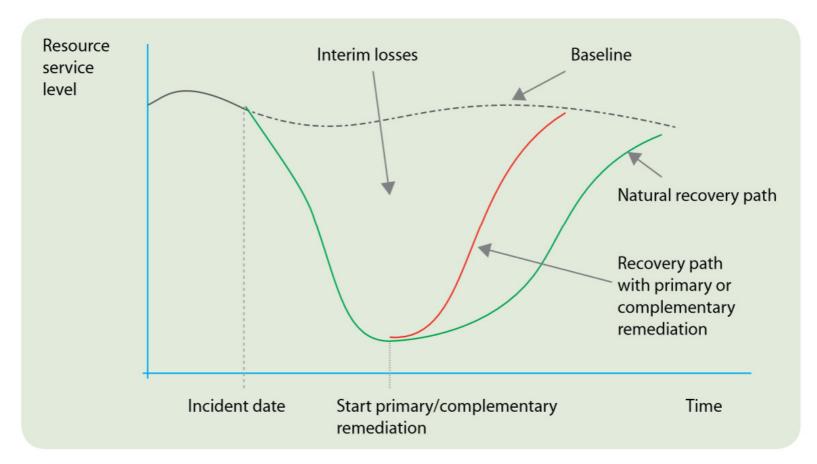


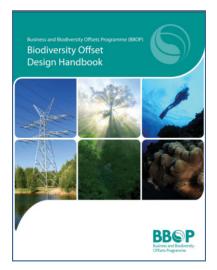
### Scope of the ELD 2004 ... Similar to ecosystem accounts

Figure 2: Types of environmental liability and damage



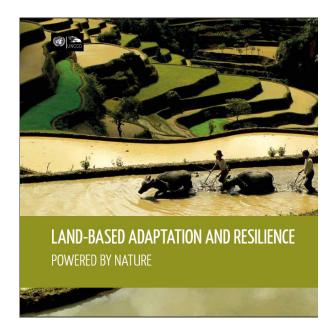
#### The ELD 2004 "accounting" of damage and assessment of remediation

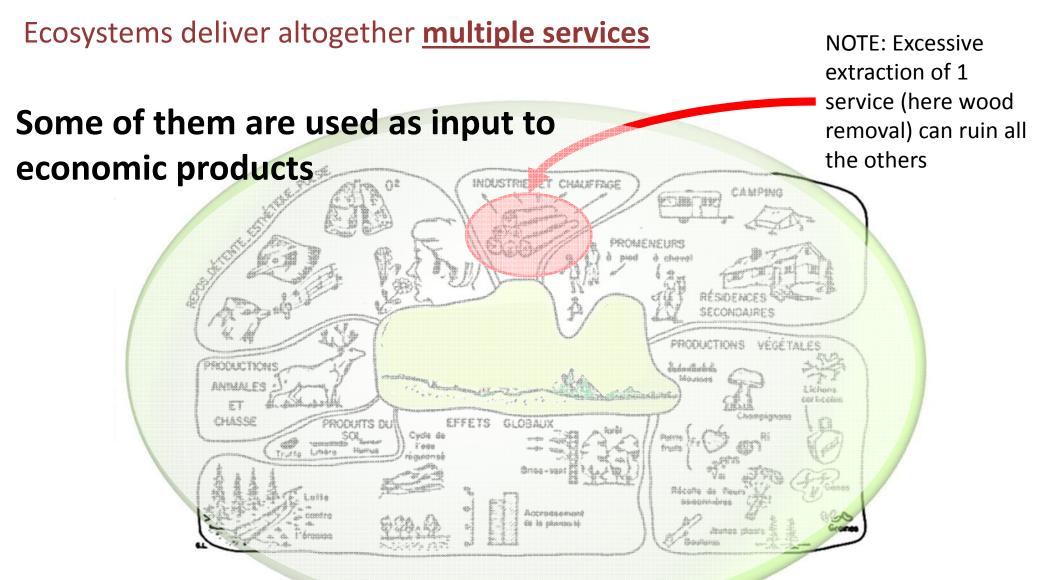




Figure 3: Illustrating baseline, initial damage, interim loss and remediation measures

#### **Remediation measures are then converted into Euros**

#### **Examples of offset / cap & trade schemes**


- ELD2004 is a Directive → country regulations (Natura 2000 context)
- USA: wetlands mitigation banking schemes...
- UNFCCC / Clean Development Mechanism: "carbon" offset permits
- Various private initiatives


e.g. BBOP (Business and Biodiversity Offset Programme)



#### **UNFCCD (Desertification): Land-Degradation Neutral World**

- The LDN concept was first introduced as "zero net land degradation" in a proposal tabled at Rio+20.
- "In a land-degradation neutral world, the amount of healthy and productive land resources needed to support vital ecosystem services remains stable or increases in a given time and space."
- "Restoring land at large scale improves watersheds and water drainage, refills aquifers, increases tree and plant cover, and helps to recover biodiversity and soil fertility."





# Others are non marketed public goods

Source: Gilbert Long, 1972

A propos du diagnostic écologique appliqué au milieu de vie de l'homme. Options Méditerranéennes, 13, CHIEAM, Montpellier, Juin 1972

Accounts are about recording and summarizing values...

• Counts, inventories are limited, standalone "accounts", issues in aggregating measurements done in physical units

#### Difficulty to Aggregate Physical Data

Ecosystem services in various units

#### Volume of flow (in tons) Sustainability water Weste and entiseions ; flows do not exist total material Weste son einen and residing throughput sand and gravel carbon S Minimission fossil fuels timber paper steel fertiliser aluminium solvents PVC als Policy heavy metals pesticides hazardous flows are of minor interest chemicals Specific environmental impact (per ton of material)

Steurer (1996),<sup>11</sup> as developed with W. Radermacher (StBA) in 1995

Jean-Louis Weber, 1<sup>st</sup> June 2015

Material flows in tons

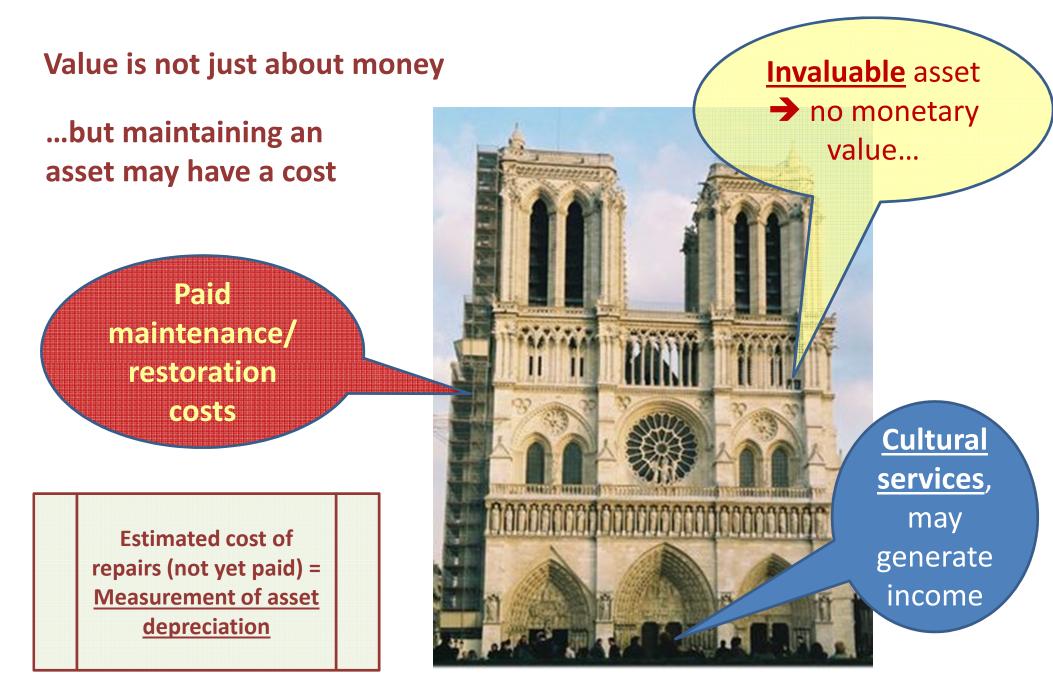
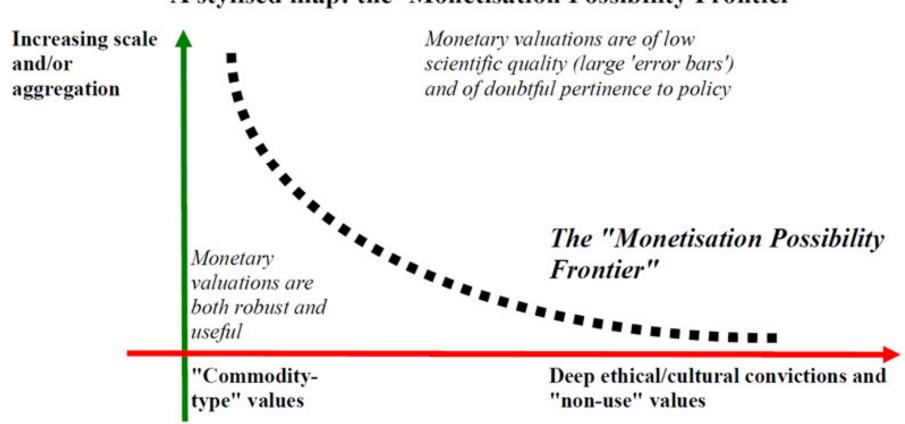

Mapping and Assessment of Ecosystems and their Services

Table 14. Available indicators for assessment of ecosystem services across different ecosystems.


| Ecosystem services                                                         | Leader          | Indicator                                                                                                                                              | Marine systems                                                                                        |  |
|----------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Cultivated crops                                                           | Agro            | Area and yields of food and feed crops                                                                                                                 | Yield     Landings                                                                                    |  |
| Reared animals and their outputs                                           | Agro            | Livestock                                                                                                                                              |                                                                                                       |  |
| Wild plants, algae and their outputs                                       | Forest          | Distribution of wild berries (modelling)                                                                                                               | <ul> <li>Catch per unit effort</li> </ul>                                                             |  |
| Wild animals and their outputs                                             | Forest          | <ul> <li>Population sizes of species of interest</li> </ul>                                                                                            | (where applicable)                                                                                    |  |
| Plants and algae from in-situ<br>aquaculture                               | Water           |                                                                                                                                                        | 1                                                                                                     |  |
| Animals from in-situ aquaculture                                           | Water           | <ul> <li>Freshwater aquaculture production</li> </ul>                                                                                                  | -                                                                                                     |  |
| Woter (Nutrition)                                                          | Water           | Water abstracted                                                                                                                                       |                                                                                                       |  |
| Biomoss (Materials)                                                        | Forest          | Area and yield of fibre crops      Timber                                                                                                              | 1                                                                                                     |  |
|                                                                            | Agro            | production and consumption statistics                                                                                                                  |                                                                                                       |  |
| Water (Materials)                                                          | Water           | Water abstracted                                                                                                                                       |                                                                                                       |  |
| Plant-based resources                                                      | Forest          | <ul> <li>Fuel wood statistics</li> </ul>                                                                                                               |                                                                                                       |  |
| Animal-based resources                                                     |                 |                                                                                                                                                        | 1                                                                                                     |  |
| Animal-based energy                                                        |                 |                                                                                                                                                        |                                                                                                       |  |
| (Mediation of waste, toxics and other<br>nuisances)                        | Forest          | Area occupied by riparian forests     Nitrogen and Sulphur removal (forests)                                                                           | Nutrient load to coast     Heavy metals and persistent     organic pollutants deposition     Organisk |  |
| Mass stabilisation and control of<br>erosion rates                         | Forest<br>Agro  | <ul> <li>Soll crasion risk or crosion protection</li> </ul>                                                                                            | Coastal protection capacity                                                                           |  |
| Buffering and attenuation of mass<br>flows                                 |                 |                                                                                                                                                        |                                                                                                       |  |
| Hydrological cycle and water flow                                          |                 |                                                                                                                                                        |                                                                                                       |  |
| maintenance                                                                | 1000            |                                                                                                                                                        |                                                                                                       |  |
| Flood protection                                                           | Fresh           | <ul> <li>Floodplains areas (and record of annual<br/>floods)          <ul> <li>Area of wetlands located in flood risk<br/>zones</li> </ul> </li> </ul> | Coastal protection capacity                                                                           |  |
| Storm protection                                                           |                 |                                                                                                                                                        | 1                                                                                                     |  |
| Ventilation and transpiration                                              | Agro            | Amount of biomass                                                                                                                                      |                                                                                                       |  |
| Pollination and seed dispersal                                             | Agro            | Polination potential                                                                                                                                   |                                                                                                       |  |
| Haintaining nursery populations and<br>habitets                            |                 | <ul> <li>Share of High Nature Value farmland</li> <li>Ecological Status of water bodies</li> </ul>                                                     | Onygen concentration      Turbidity     Species distribution     Extent of     marine protected areas |  |
| Pest and disease control                                                   | 1000            |                                                                                                                                                        |                                                                                                       |  |
| Weathering processes                                                       | Agro            | <ul> <li>Share of organic farming          <ul> <li>Soil organic</li> <li>matter content              <ul></ul></li></ul></li></ul>                    |                                                                                                       |  |
| Decomposition and fixing processes                                         | Agro            | Area of nitrogen fixing crops                                                                                                                          |                                                                                                       |  |
| Chemical condition of freshwaters                                          | Water           | Chemical status                                                                                                                                        |                                                                                                       |  |
| Chemical condition of salt waters                                          | Marine          |                                                                                                                                                        | Nutrient load to coast     HM and POP loading     Onyrisk                                             |  |
| Global climate regulation by reduction<br>of greenhouse gas concentrations | Forest          | Carbon storage and sequestration by forests                                                                                                            | Carbon stock      Carbon     sequestration      PH;      Blue carbon     Primary production           |  |
| Nicro and regional climate regulation                                      | Forest          | Forest area                                                                                                                                            |                                                                                                       |  |
| Physical and experiential interactions                                     | Forest<br>Agro  | <ul> <li>Visitor statistics</li> </ul>                                                                                                                 |                                                                                                       |  |
| Intellectual and representative<br>Interactions                            | WaterMar<br>ine |                                                                                                                                                        |                                                                                                       |  |
| Spintual and/or emblematic                                                 | 1000            |                                                                                                                                                        |                                                                                                       |  |
| Other cultural outputs                                                     |                 | <ul> <li>Extent of protected areas</li> </ul>                                                                                                          |                                                                                                       |  |

#### Accounts are about recording and summarizing values...

- Counts, inventories are limited, standalone "accounts", issues in aggregating measurements in physical units
- Accounts or balances, integrated by double-entry rules are about **values**:
  - − Assets value → Wealth
  - − Flows, receipts, expenditures → Net Income
- Monetary value is important but it is not the only value that we acknowledge

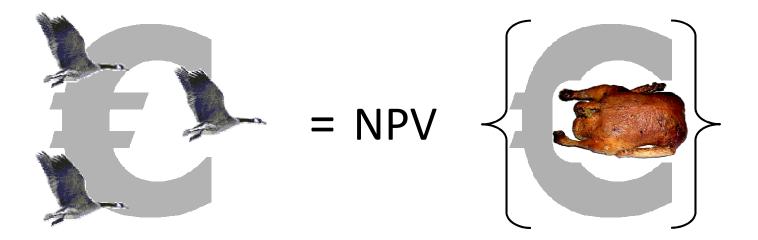


O'Connor and Steurer: The "Frontier of Monetisation" in Environmental Valuation, paper presented at the 6<sup>th</sup> meeting of the London Group on Environmental Accounting, Canberra November 1999

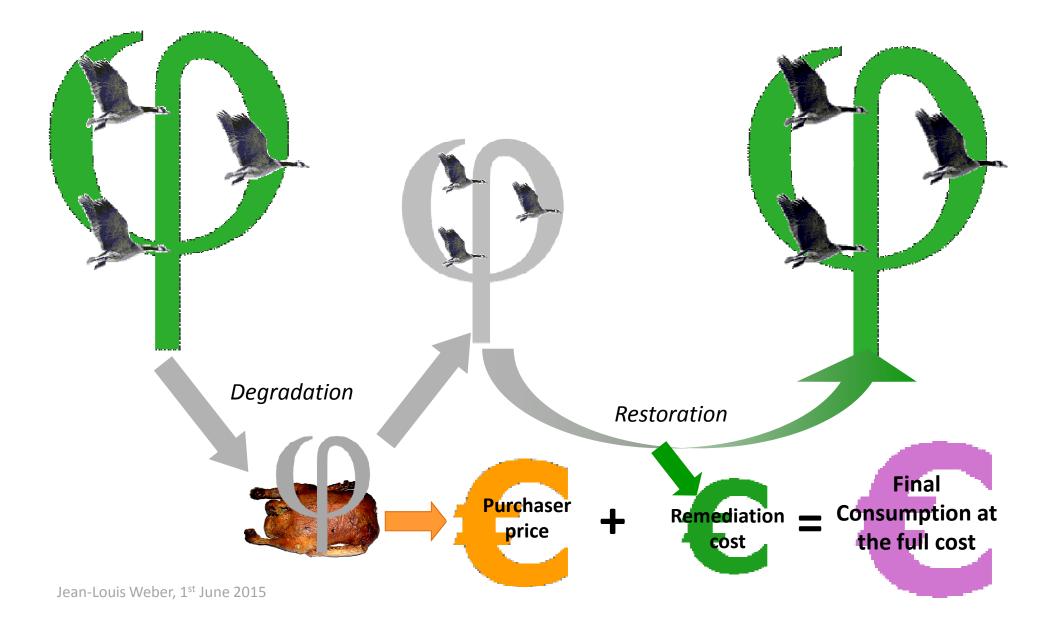


#### A stylised map: the 'Monetisation Possibility Frontier'

The conventional economic valuation of resource depletion is not appropriate for ecosystem degradation


Conventional economic theory:

Asset depreciation =


- 1. difference between asset values at two dates
- 2. cumulated loss of future benefits (financial approach, "Net Present Value")

NB: 1. and 2. are assumed to be equivalent under the condition of "perfect market"

Financial value of natural assets = "Net Present Value" of expected future benefits



Ecosystem natural capital accounting: asset = "quantity\*quality" (physical measurement) only change is priced (imputed remediation costs)



#### Moving from Quantities to Values: Economic value vs. Ecological value

#### • Economic value = quantity x price

Financial & national accounts: values are established by the market; prices are decided by the transactors, they relate to production costs, to the capacity for the seller to make profit, to the quality for the buyer, to its capacity to negotiate discounts...

#### • Ecological value = quantity x unit values (price-equivalents)

*Ecosystem capital accounts: values need to be calculated, knowing quantity and defining an overall "quality" index equivalent to market price* 

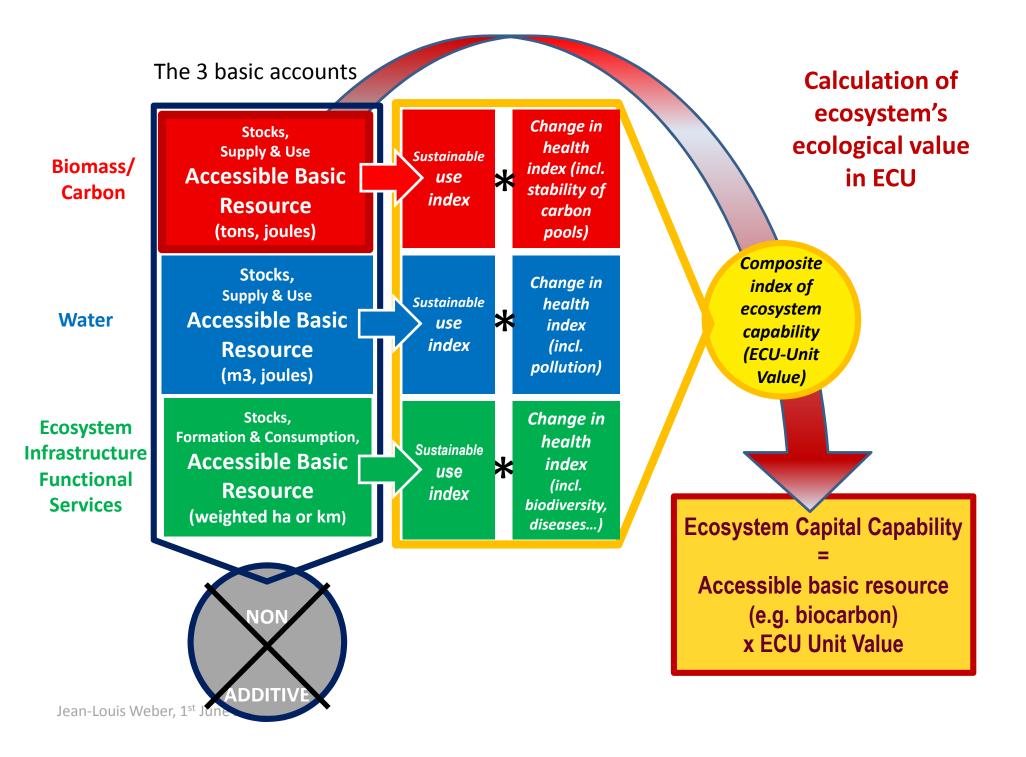
#### General equivalency, measurement of stores of various ecosystem capabilities and of their change (degradation, improvement), useable for offset transactions...

Conventional but transparent and verifiable measurement to be used to record ecological credits (ecosystem enhancement) and debts (degradation)

#### Examples of equivalent-units to measure physical ecosystem flows/stocks

- Tonne (Ayres): Material Flows Accounts (MFA); all tonnes are equivalent...
- **Tonne of Oil Equivalent (TOE)** (International Energy Agency, OECD...): energy released by burning one tonne of crude oil
- Livestock Unit (LU) (FAO, ...): all grazing livestock animals measured in "adult cow"...
- Environmentally weighted tonne: EWMF, tonnes adjusted for potential environmental impacts (toxicity, life cycle...)
- **Global Hectare** (Wackernagel): Ecological Footprint Accounts, "biocapacity" of 1 hectare
- **EMERGY** (Odum): embedded renewable energy as universal equivalent
- **Ecointegrador** (Naredo/Valero): total exergy (energy available for uses) of water systems integrating quantity and quality, with reference to environmental targets
- **Econd** (Cosier, WGCS/Australia): ecosystem condition unit (a currency) to measure ecosystem biodiversity comparing historical and present condition (extent and health)
- ECU (Weber, EEA): ecosystem capability (or potential) equivalent-unit (a currency) integrating quantity (productivity) and quality (ecosystem health)

#### ECU: a composite currency to measure ecological value


## Economic value: Quantity x Price (in money) Ecological Value: Quantity x Price-equivalent (in ECU)

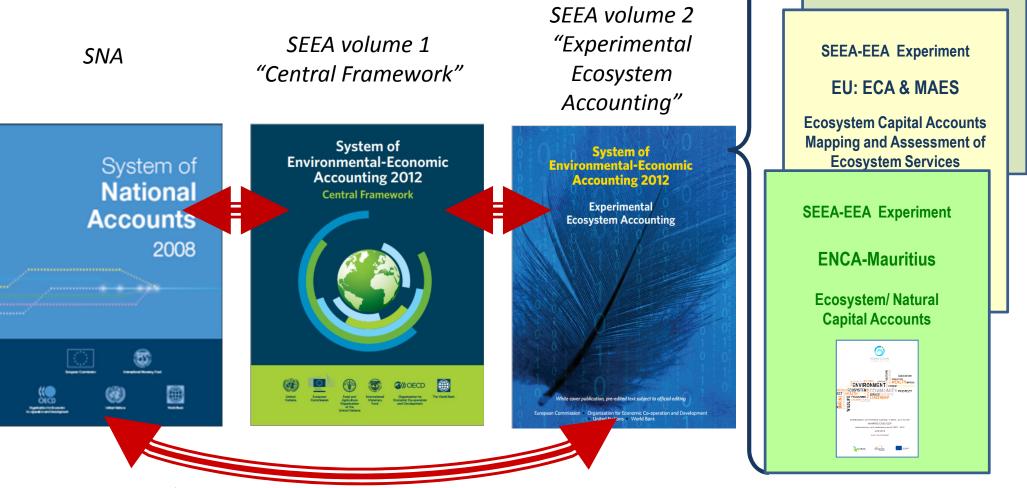
In physical accounts, measurements are made in basic units (tons, joules, m<sup>3</sup> or ha) which cannot be aggregated. These measurements have to converted to a special composite currency named **ECU for 'Ecosystem Capability Unit'.** 

The price of one physical unit (e.g. 1 ton of biomass) in ECU expresses at the same time the intensity of use of the resource in terms of maximum sustainable yield and the direct and indirect impacts on ecosystem condition (e.g. water contamination or biodiversity loss, inversely ecosystem restoration).



1 ECU = 1 unit of accessible ecosystem resource

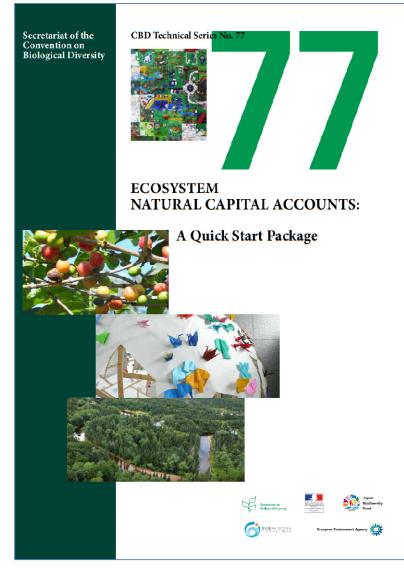



#### System and Services approaches **Ecosystem capital** Monetary values Physical ecosystems & *Ecosystem services* Natural & modified inland socio-Provisioning, regulating Ecosystem services valuation productivity & socio-cultural services ecosystems + Sea, Atmosphere (market & shadow prices), & resilience Payments for Ecosystem Services **Ecosystem Stocks & Flows**, Wealth assessments **Extent & Condition** Balance, Service a: e.g. Food provision Service a \$ valuation Ecosystem carbon, **Sustainable Use Index** biomass Service **b** \$ valuation Service b: e.g. Timber provision **Health Index** 51 Balance. Service c \$ valuation Service c: e.g. Fresh water provision/ blue water Sustainable Use Index **Ecosystem water** Service d \$ valuation Service d: e.g. Fresh water provision/ green water **Health Index** Service e \$ valuation Service e: e.g. Habitat Balance, Service f: e.g. Pollination Service f \$ valuation **Bundle of** (systems potential) Service g: e.g. Water regulation/ purification Service g \$ valuation intangible ecosystem Service h: e.g. Water regulation/ floods Service h \$ valuation Sustainable Use Index infrastructure Service i: e.g. Recreation Service i \$ valuation functional Health Index services (indirect Service j: e.g. Tourism inputs Service j \$ valuation (incl. Biodiversity measurement) Service k: e.g. Symbolic values Service k \$ valuation change) Service I: e.g. Non-use values Service I \$ valuation

Total Ecosystem Capability (in ECU) Degradation / Enhancement 5

Integrity of ecosystem structures & functions Sustainability of ecosystem services delivery Maintenance & remediation costs, Ecological Taxes, Mitigation banking/ Offset Certificates... The CBD ENCA-QSP guidance manual

#### SNA and SEEA volumes 1 & 2

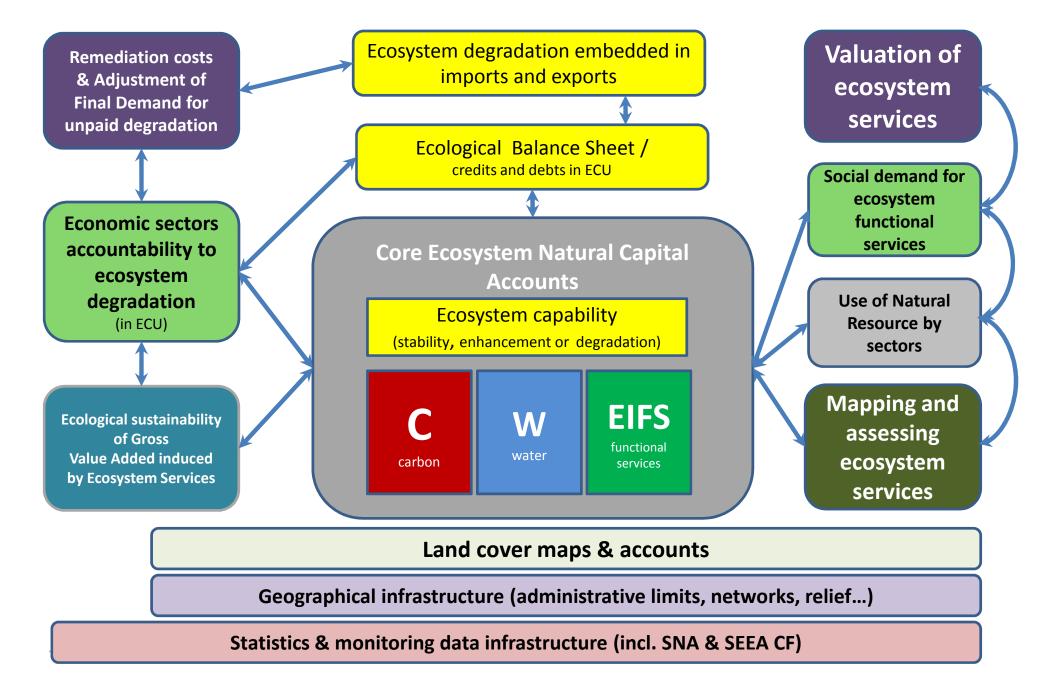

The System of Environmental-Economic Accounts "Central Framework" (SEEA-CF) adopted by the UN Statistical Commission in 2012 as an international statistical standard on par with the System of National Accounts (SNA 2008). 12) has been supplemented in 2013 by a volume on "Experimental Ecosystem Accounting" (SEEA-EEA). While the SEEA-CF is recommended for implementation, the SEEA-EEA which is a conceptual framework is now tested in various projects for which additional methodologies need to be defined. The CBD TS77 ENCA-QSP is a contribution to the development of such tests.



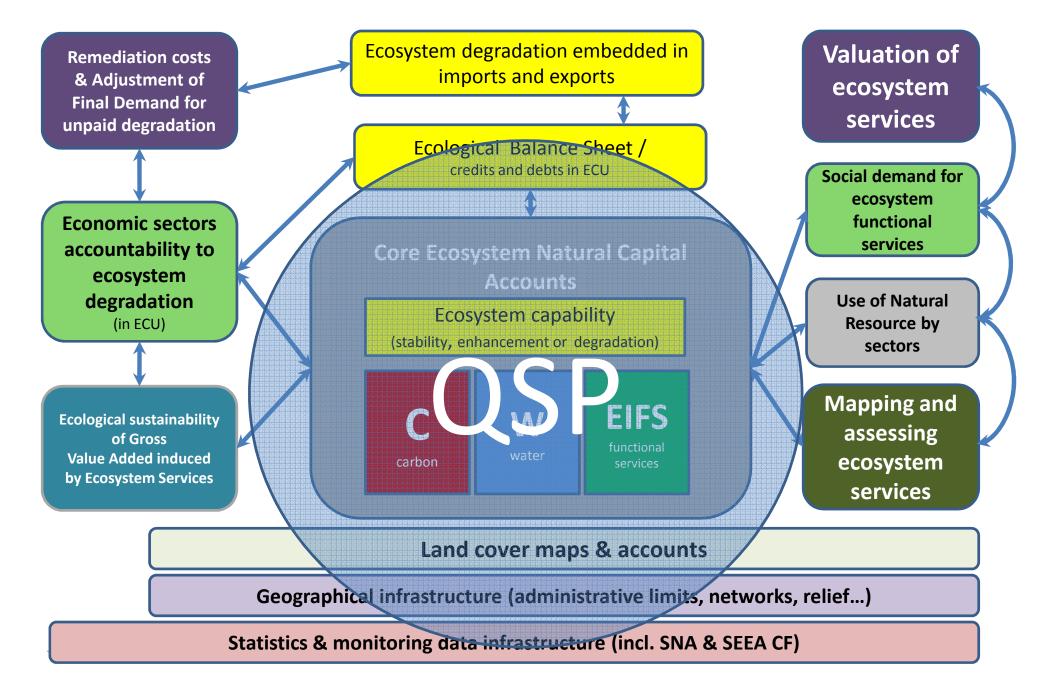
**SEEA-EEA Experiment** 

**WB WAVES** 

# An accounting framework to put the SEEA-EEA to work <u>NOW</u> : Ecosystem Natural Capital Accounts




A response to the requirement of the CBD Aichi Target 2 call for *incorporating, as appropriate and by 2020 at the latest, biodiversity values into national accounting*.


- A technical accounting framework for measuring ecosystem sustainable capacity, resilience and economic sectors' accountability to the ecosystem. It includes a set of tables and compilation guidance
- A "distribution" (in the sense used for open source software) of the SEEA-EEA, aimed at putting it to work
- A Quick Start Package for experimentations
- Supported by a tutorial for technical training of experts

Jean-Louis Weber, 1st June 2015

#### Structure of Ecosystem Natural Capital Accounts



#### Structure of Ecosystem Natural Capital Accounts



# Simplified classifications of land cover types and land cover flows, to be detailed according to national/local conditions

| Land co | ver types                                   |
|---------|---------------------------------------------|
| 01      | Urban and associated developed areas        |
| 02      | Homogeneous herbaceous cropland             |
| 03      | Agriculture plantations, permanent crops    |
| 04      | Agriculture associations and mosaics        |
| 05      | Pastures and natural grassland              |
| 06      | Forest tree cover                           |
| 07      | Shrubland, bushland, heathland              |
| 08      | Sparsely vegetated areas                    |
| 09      | Natural vegetation associations and mosaics |
| 10      | Barren land                                 |
| 11      | Permanent snow and glaciers                 |
| 12      | Open wetlands                               |
| 13      | Inland water bodies                         |
| 14      | Coastal water bodies and inter-tidal areas  |
|         | Sea (interface with land)                   |

| Land c | Land cover flows                                         |  |  |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| lf1    | Artificial development                                   |  |  |  |  |  |  |  |  |  |
| lf2    | Agriculture extension                                    |  |  |  |  |  |  |  |  |  |
| lf3    | Internal conversions, rotations                          |  |  |  |  |  |  |  |  |  |
| lf4    | Management and alteration of forested land               |  |  |  |  |  |  |  |  |  |
| lf5    | Restoration and development of habitats                  |  |  |  |  |  |  |  |  |  |
| lf6    | Changes of land-cover due to natural and multiple causes |  |  |  |  |  |  |  |  |  |
| lf7    | Other land cover changes n.e.c. and reclassification     |  |  |  |  |  |  |  |  |  |
| lfO    | No observed land-cover change                            |  |  |  |  |  |  |  |  |  |

Land cover flows regroup elementary changes according to land use and natural processes

### Ecosystem carbon account

| Accounts                                                         | Main items                                                                                                                                                              | Typical indicators                                                           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| I. Ecosystem Carbon Basic Balance                                | Stocks<br>Primary and secondary production of biocarbon<br>Withdrawals<br>Natural perturbations                                                                         | Total inflow of biocarbon<br>Net Ecosystem Carbon Balance                    |
| II. Accessible Resource Surplus                                  | Total inflow of biocarbon<br>Accessible stock carried over<br>Restrictions of use<br>Other accessibility corrections                                                    | Net Accessible Resource Surplus                                              |
| III. Total Uses of Ecosystem Bio and<br>Geo-Carbon               | Total use of biocarbon<br>Imports/biocarbon commodites contents<br>Imports/ embedded biocarbon<br>Direct use of fossil carbon<br>Fossil carbon embedded into commodites | Direct use of biocarbon Biocarbon<br>requirement<br>Total carbon requirement |
| IV. Table of Indexes of Intensity of Use<br>and Ecosystem Health | Sustainable intensity of ecosystem carbon use<br>Composite ecosystem biocarbon health index                                                                             | Biocarbon ecological internal unit<br>value                                  |

Jean-Louis Weber, 1<sup>st</sup> June 2015

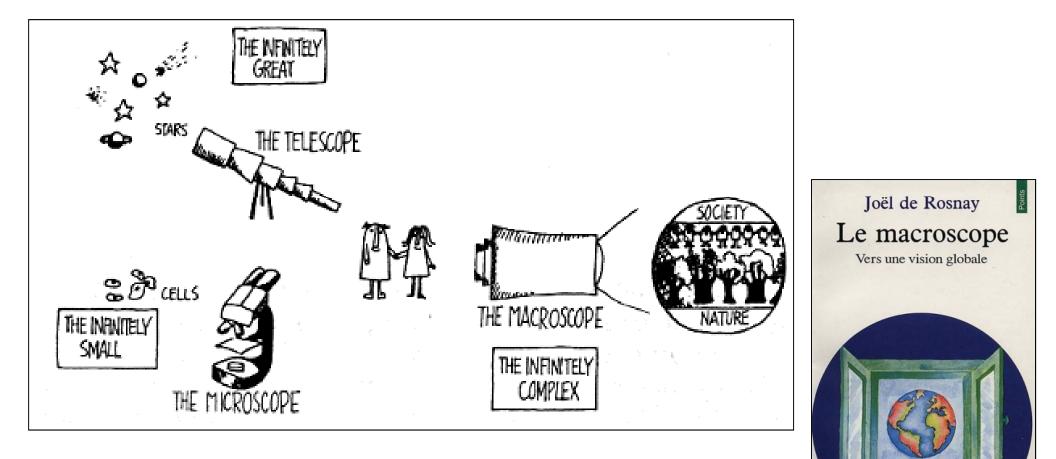
#### Ecosystem water resource account

| Accounts                                                         | Main items                                                                                                                                                                                                 | Typical indicators                                                             |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| I. Ecosystem Water Basic Balance                                 | Stocks<br>Primary and secondary production of water<br>Transfers between water bodies and basins<br>Actual Evapotranspiration<br>Abstraction of water, supply and use<br>Returns to waste water and losses | Total inflow of water<br>Net Ecosystem Water Balance                           |
| II. Accessible Resource Surplus                                  | Total renewable water resources<br>Accessible stock carried over<br>Restrictions of use<br>Other accessibility corrections                                                                                 | Net Accessible Water Resource<br>Surplus                                       |
| III. Total Uses of Water                                         | Total use of ecosystem water: blues, grey &<br>green water<br>Imports/water commodities contents<br>Imports/ embedded water                                                                                | Total use of ecosystem water<br>Direct use of water<br>Total water requirement |
| IV. Table of Indexes of Intensity of Use<br>and Ecosystem Health | Sustainable intensity of ecosystem water use<br>Composite ecosystem water health index                                                                                                                     | Water internal ecological unit value                                           |

### Ecosystem infrastructure functional services account

| Accounts                                                                     | Accounts Main items                                                                                                                                                                                                                            |                                                                                         |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| I. Basic Balances<br>I.1 Basic land cover account<br>I.2 Basic river account | Stocks of land cover (km²)<br>Formation & Consumption of land cover<br>Stocks of rivers (SRMU)<br>Change in rivers stocks                                                                                                                      | Net change/ land cover<br>Net change/ river systems                                     |  |  |  |  |
| II. Accessible ecosystem infrastructure<br>potential                         | Stocks of Landscape Ecosystem Potential<br>Stocks of River Ecosystem Potential<br>Total Ecosystem Infrastructure Potential                                                                                                                     | Change in LEP<br>Change in REP<br>Change in TEIP                                        |  |  |  |  |
| III. Overall access to ecosystem<br>infrastructure potential                 | Population local access to TEIP<br>Agriculture local access to TEIP<br>Nature conservation local access to TEIP<br>Basin access to water regulating services<br>Regional access to TEIP [tourism]<br>Global nature conservation access to TEIP | Change in access to key ecosystem<br>infrastructure functional services                 |  |  |  |  |
| IV. Table of Indexes of Intensity of Use<br>and Ecosystem Health             | Ecosystem infrastructure intensity of use index<br>Composite ecosystem infrastructure health index                                                                                                                                             | Annual change in ecosystem<br>infrastructure services ecological<br>internal unit value |  |  |  |  |

### Ecosystem capability account, creation of ecological debts & credits


|                              |             |                                                                                                             | [C]    | [W]                                      | [EIP]                              | [ECC]  |
|------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|------------------------------------|--------|
|                              |             | Biomass/<br>Carbon                                                                                          | Water  | Ecosystem<br>infrastructure<br>potential | Ecosystem<br>Capital<br>Capability |        |
|                              |             | Accessible Ecosystem Resource and Use                                                                       | t or j | m <sup>3</sup> or j                      | Weighted<br>ha_or_km               | NA     |
|                              | EC1         | Net Accessible Ecosystem Resources, year (t-1) (NEACS, NEAWS & Net Ecosystem Infrastructure Potential)      | 1270   | 1980                                     | 2331                               |        |
| Accessible Basic             | EC211       | Change due to Use of Accessible Basic Resources                                                             | 90     | -30                                      | -11                                | NA     |
| Resources                    | EC212       | Other Change due to Natural & Multiple Causes                                                               | -60    | 50                                       | 0                                  | NA     |
| Resources                    | EC21        | Total Change in Basic Resource Accessibility                                                                | 30     | 20                                       | -11                                | NA     |
|                              | EC2         | Net Accessible Ecosystem Resources, year (t) (NEACS, NEAWS & Net Ecosystem Infrastructure Potential)        | 1300   | 2000                                     | 2320                               | NA     |
| Use of ecosystem<br>resource | EC3         | Use of ecosystem resource                                                                                   | 1210   | 2030                                     | 2331                               | NA     |
|                              |             | Ecosystem Capability Account                                                                                | ECU    | ECU                                      | ECU                                | ECU    |
|                              | EC4         | Mean ECU unit value of Accessible Resources & Ecosystem Capital Capability in year (t-1)                    |        | 0.9                                      | 63                                 |        |
| Culoulution of mit           | EC511       | Indexes of sustainable intensity of resource use [IF<1, = overuse, dilapidation; IF>1, accumulation]        | 1.074  | 0.985                                    | 0.995                              | NA     |
| Calculation of unit          | EC512       | Indexes of change in ecosystem health [IF<1, = deterioration; IF>1, improvement]                            | 0.910  | 0.960                                    | 0.950                              | NA     |
| values in ECU                | EC51        | Annual change in accessible resources internal unit values & change of ECU unit value                       | 0.992  | 0.973                                    | 0.973                              | 0.979  |
|                              | EC5         |                                                                                                             | 0.9    | 43                                       |                                    |        |
|                              | EC6         | Net Accessible Resources & Ecosystem Capital Capability, ecological value in ECU, year (t-1)                | 1222.7 | 1906.3                                   | 2244.2                             | 1222.7 |
|                              | EC7         | Net Accessible Resources & Ecosystem Capital Capability, ecological value in ECU, year (t)                  | 1225.5 | 1885.4                                   | 2187.0                             | 1225.5 |
| Accessible Resources &       | EC71        | Activities' Net Accumulation of Ecosystem Capital Capability, in ECU [IF<0, = degradation; IF>0, = renewal] | 0.8    | -22.9                                    | -59.2                              | 0.8    |
| Ecosystem Capital            | EC722       | Global/continental/regional processes                                                                       | 1.0    | 1.0                                      | 1.0                                | 1.0    |
| Capability                   | EC722       | Change caused by neighbouring/interacting ecosystems                                                        | 1.0    | 1.0                                      | 1.0                                | 1.0    |
|                              | EC72        | Change in Ecosystem Capital Capability Due to Natural and Multiple Causes, in ECU                           | 2.0    | 2.0                                      | 2.0                                | 2.0    |
|                              | EC73        | Total Change in Accessible Resources & Ecosystem Capital Capability, in ECU = EC7-EC6                       | 2.8    | -20.9                                    | -57.2                              | 2.8    |
|                              | EC81 = EC71 | Activities' Net Accumulation of Ecosystem Capital Capability, in ECU [IF<0, = degradation; IF>0, = renewal] | 0.8    | -22.9                                    | -57.2                              | 0.8    |
|                              | EC821       | Indirect change caused, Global/continental/regional processes                                               | -3.0   | -2.0                                     | -4.0                               | -3.0   |
| Creation of Ecological       | EC822       | Change caused to neighbouring/interacting ecosystems                                                        | -1.0   | -10.0                                    | -15.0                              | -1.0   |
| Debts & Credits              | EC82        | Net Change Caused to Other Ecosystems' Capability, in ECU [degradation (-) or enhancement (+)]              | -4.0   | -12.0                                    | -19.0                              | -4.0   |
|                              | EC8         | Creation of New Ecological Debts & Credits (in ECU) [direct & indirect ecosystem degradation or renewal]    | -3.2   | -34.9                                    | -78.2                              | -3.2   |
|                              | EC9         | Cumulated Net Balance of Ecological Debts (-) & Credits (+) in ECU (from baseline year 0)                   |        |                                          |                                    | -16.5  |
|                              |             | Indexes                                                                                                     |        |                                          |                                    |        |
|                              | EC51        | Annual change in accessible resources internal unit values & change of ECU unit value                       | 0.992  | 0.505                                    | 0.498                              | 0.665  |
| Indexes                      | EC5         | Mean ECU unit value of Accessible Resources & Ecosystem Capital Capability in year (t)                      |        | 0.9                                      | 43                                 |        |
| Indexes                      | EC22        | Index of Change in Volume of Basic Resource Accessibility = EC2/EC1                                         | 1.024  | 1.010                                    | 0.995                              | NA     |
|                              |             | Index of Change in Ecological Value of Ecosystem Capital Capability =EC22xEC5                               | 0.965  | 0.952                                    | 0.938                              | 0.965  |

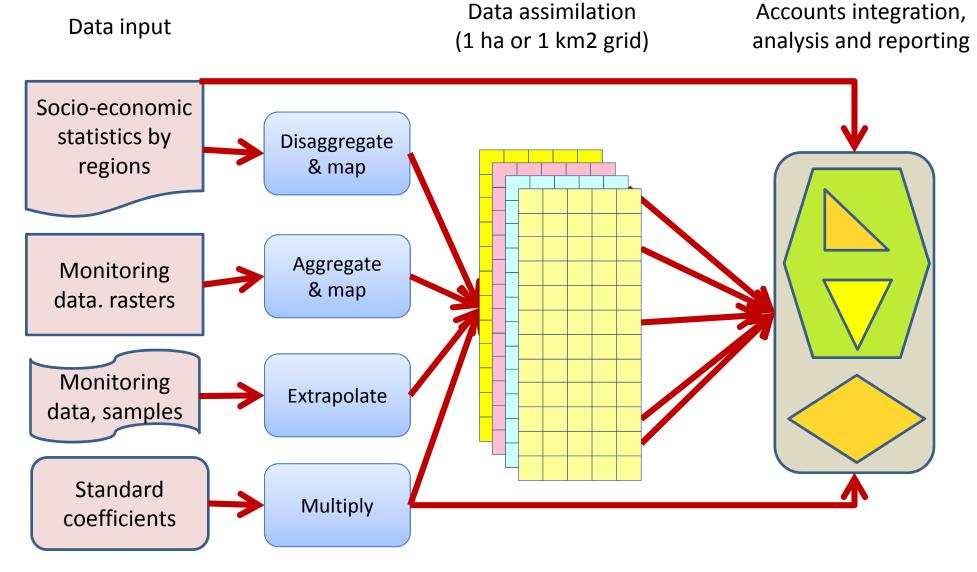
# Ecological balance- sheet in ECU

|                                                       | Domestic<br>physical<br>assets | Ecological<br>credits | Ecological<br>debts | Net<br>Ecological<br>Worth |
|-------------------------------------------------------|--------------------------------|-----------------------|---------------------|----------------------------|
|                                                       | [a]                            | [b]                   | [c]                 | = [b]-[c]                  |
| I - Short term assets and liabilities                 |                                |                       |                     |                            |
| Opening balance sheet/ short term                     | 100                            | 100                   |                     | 100                        |
| Degradation by activities                             | -12                            |                       | 12                  | -12                        |
| Natural losses                                        | -9                             | -9                    |                     | -9                         |
| Restoration from previous degradation                 | 2                              |                       | -2                  | 2                          |
| Ecosystem creation/ enhancement                       | 7                              | 7                     |                     | 7                          |
| Natural gains                                         | 4                              | 4                     |                     | 4                          |
| Net change in short term assets and liabilities       | -8                             | 2                     | 10                  | -8                         |
| Closing balance sheet/ short term                     | 92                             | 102                   | 10                  | 92                         |
| II - Long term assets and liabilities                 |                                |                       |                     |                            |
| Ecosystem restoration commitments                     |                                | 50                    | 50                  | (                          |
| Accumulated ecological credits/ allocations           |                                | 13                    |                     | 13                         |
| Accumulated ecological debts                          |                                |                       | 35                  | -35                        |
| Opening balance sheet/ long term                      |                                | 63                    | 85                  | -22                        |
| Change in ecosystem restoration commitments           |                                | 0                     | 0                   | C                          |
| Change in accumulated ecological credits/ allocations |                                | 8                     |                     | 8                          |
| Change in accumulated ecological debts                |                                |                       | 11                  | -11                        |
| Net change in longterm assets and liabilities         |                                | 8                     | 11                  | -9                         |
| Ecosystem restoration commitments                     |                                | 50                    | 50                  | (                          |
| Accumulated ecological credits/ allocations           |                                | 21                    |                     | 21                         |
| Accumulated ecological debts                          |                                |                       | 46                  | -46                        |
| Closing balance sheet/ long term                      |                                | 71                    | 96                  | -25                        |
| III - International liabilities                       |                                |                       |                     |                            |
| Opening balance sheet/ Embedded ecosystem degradation |                                |                       | 30                  | -30                        |
| Accquisition of embedded ecosystem degradation        |                                |                       | 15                  | -15                        |
| Compensation of embedded ecosystem degradation        |                                |                       | -5                  | 5                          |
| Net change in ecosystem degradation embedded in trade |                                |                       | 10                  | -10                        |
| Closing balance sheet/ Embedded ecosystem degradation |                                |                       | 40                  | -40                        |
| Consolidated balance sheet (I + II + III)             |                                |                       |                     |                            |
| Opening balance sheet                                 | 100                            | 163                   | 115                 | 48                         |
| Net change                                            | -8                             | 10                    | 31                  | -21                        |
| Closing balance sheet                                 | 92                             | 173                   | 146                 | 27                         |

The Ecological Balance Sheet: an integrated framework

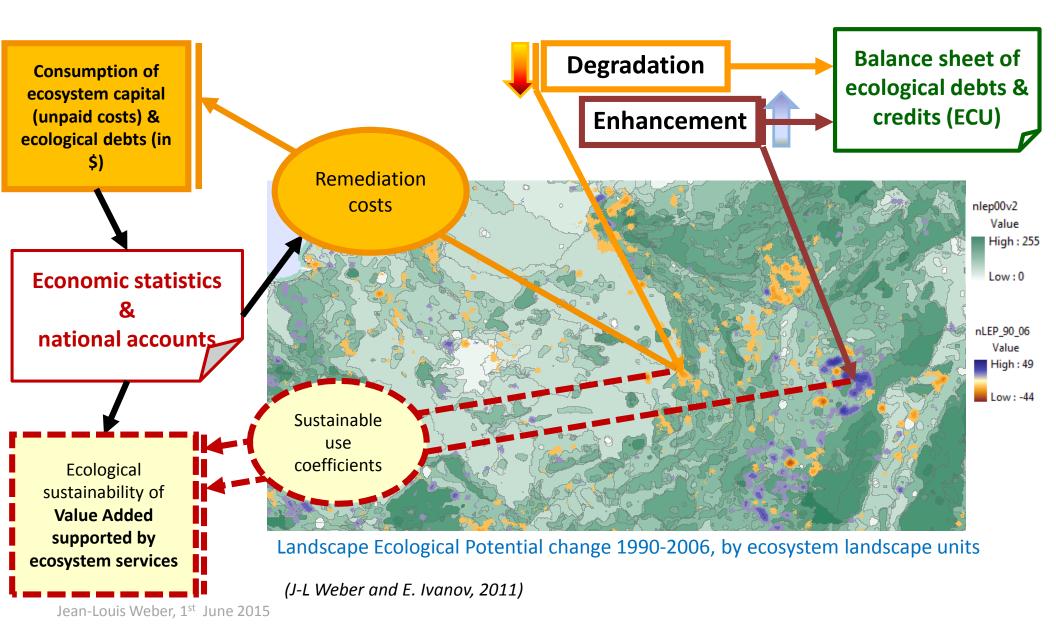
QUESTION: Is the Ecological Balance Sheet similar to the Macroscope?




Jean-Louis Weber, 1<sup>st</sup> June 2015

Implementation of (Integrated) Ecosystem Natural Capital Accounts and Example of experimental results for Mauritius




Jean-Louis Weber, 1<sup>st</sup> June 2015

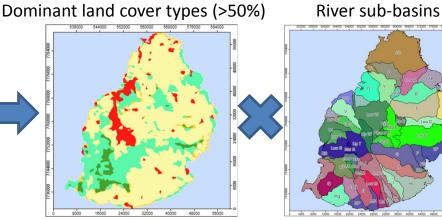
#### Main data flows to compile ecosystem capital accounts

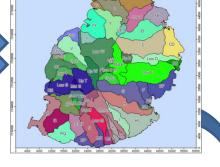


Jean-Louis Weber, 1<sup>st</sup> June 2015

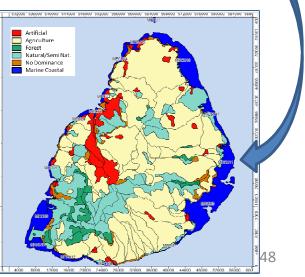
# From ecosystem physical degradation to capital consumption, ecological debts and sustainable benefits

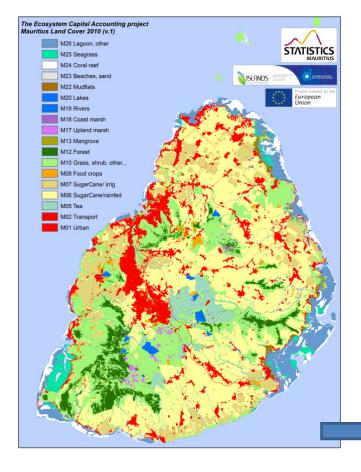



# **SEEA-ENCA** Mauritius preliminary results :




The Ecosystem Capital Accounting project Mauritius Land Cover 2010 (v.1) M26 Lagoon, other STATISTICS MAURITIUS M25 Seagrass M24 Coral reef M23 Beaches, sand 💧 ISLANDS 📰 M22 Mudflats M20 Lakes European M19 Rivers M18 Coast marsh M17 Upland marsh M13 Mangrove M12 Forest M10 Grass, shrub, other ... M08 Food crops M07 SugarCane/ irrig M06 SugarCane/rainfed M05 Tea M02 Transport M01 Urban

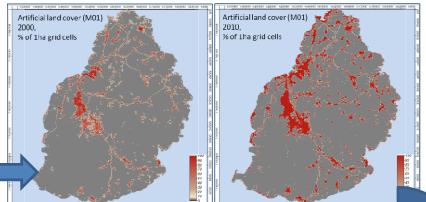

A land cover map has been produced from the start for:


- Defining statistical units for accounting (EAU) and 1.
- Computing the land cover account (next slide) 2.



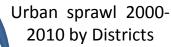


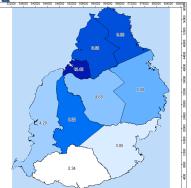
Socio-ecological landscape units (SELU) Marine Coastal Units (MCU)






# **SEEA-ENCA Mauritius preliminary results :** Land cover and change from 2000 to 2010


The land cover data are stored using geographical datasets which use grids (10m x 10m and 100m x 100m) at the most detailed level.


Urban land cover 2000 & 2010



2000 2010 - km2

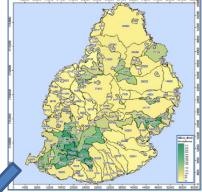
These grids allow computing statistics and producing ecosystems/natural capital accounts for various statistical units such as municipal and village council areas, districts, coastal zones, river basins, socioecological landscape units and any relevant zoning.



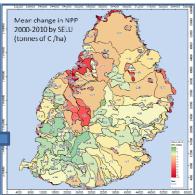


Land cover stock and change account/ urban sprawl

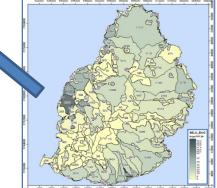
|                                          |                    |               |       |       |            |                 |             |         |            | -      |   |
|------------------------------------------|--------------------|---------------|-------|-------|------------|-----------------|-------------|---------|------------|--------|---|
| Provisional                              | Rivière du Rempart | Pamplemousses | Flacq | Moka  | Grand Port | Plaines Wilhems | Black River | Savanne | Port Louis | TOTAL  |   |
| District AREA SQKM                       | 14703              | 18019         | 29826 | 23512 | 26134      | 19839           | 25558       | 24758   | 3976       | 186325 | 1 |
| M01 Urban land cover 2000 v0             | 747                | 705           | 405   | 282   | 406        | 2060            | 334         | 266     | 2667       | 7872   |   |
| M01 Urban land cover 2000 v1, adjusted   | 1225               | 1172          | 667   | 510   | 549        | 2456            | 542         | 379     | 3284       | 10782  | ^ |
| lf1 Urban sprawl                         | 478                | 467           | 263   | 228   | 143        | 396             | 208         | 112     | 616        | 2911   |   |
| M01 Urban land cover 2010                | 1704               | 1639          | 930   | 738   | 691        | 2852            | 749         | 491     | 3900       | 13693  |   |
| Jean-Louis Weber, 1 <sup>st</sup> June 2 | 015                |               |       |       |            |                 |             |         |            |        |   |


# SEEA-ENCA Mauritius preliminary results : The biomass-carbon account

Carbon Accounts show the capacity of the ecosystems to produce biomass and the way it is used by crops harvests and trees removal or sometimes sterilised by artificial developments or destroyed by soil erosion or forest fires (in line with IPCC guidelines).


Accounts are compiled using various sources such as products based on earth observation by satellite (e.g. MODIS NPP), on in situ monitoring (for IPCC-LULUCF, FAO/soil, FRA2010) and official statistics .

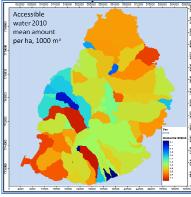
| Simplified bio-carbon accounts by district   | ts, 2010           |               |         |         |            |                 |             |         | Tons of ca | arbon    |   |
|----------------------------------------------|--------------------|---------------|---------|---------|------------|-----------------|-------------|---------|------------|----------|---|
| Provisional 2010                             | Riviere du Rempart | Pamplemousses | Flacq   | Moka    | Grand Port | Plaines Wilhems | Black River | Savanne | Port Louis | Tot      |   |
| Initial stock 2010                           | 1457955            | 2101934       | 4135543 | 4165122 | 2855365    | 3327114         | 3173857     | 3196601 | 432317     | 24845800 |   |
| Woody biomass                                | 873403             | 1137222       | 2068571 | 1744337 | 1796040    | 1643485         | 2224653     | 2409579 | 265193     | 14162483 |   |
| Topsoil organic carbon                       | 584551             | 964712        | 2066972 | 2420785 | 1059325    | 1683629         | 949204      | 787022  | 167124     | 10683324 |   |
| Flows/inputs                                 | 335582             | 417954        | 819601  | 675923  | 736068     | 454057          | 642970      | 739278  | 68922      | 4890354  |   |
| Net Primary Production                       | 335582             | 417954        | 819601  | 675923  | 736068     | 454057          | 642970      | 739278  | 68922      | 4890354  |   |
| Flows/outputs and decrease                   | 349143             | 448659        | 870542  | 708508  | 725853     | 481532          | 650835      | 744290  | 74976      | 5054339  |   |
| Removals, harvests                           | 65446              | 90345         | 108405  | 56498   | 90172      | 35596           | 87914       | 81900   | 1698       | 617974   |   |
| Wood removals                                |                    |               |         |         |            |                 |             |         |            | 0        |   |
| Sugarcane                                    | 63718              | 86585         | 104230  | 52531   | 87208      | 31984           | 83773       | 80223   | 912        | 591165   | - |
| Food crops                                   | 1727               | 3759          | 4175    | 3656    | 2918       | 3565            | 4141        | 1633    | 786        | 263      |   |
| Other cops                                   | 0                  | 0             | 0       | 311     | 46         | 46              | 0           | 44      | 0          | 447      |   |
| Decrease due to land use change              | 4102               | 4761          | 5762    | 3629    | 3240       | 5216            | 2881        | 2290    | 1388       | 33269    |   |
| Other decrease (fire, erosion)               | 14580              | 21019         | 41355   | 41651   | 28554      | 33271           | 31739       | 31966   | 4323       | 248458   |   |
| Soil/decomposers respiration v2              | 265016             | 332534        | 715020  | 606730  | 603888     | 407449          | 528301      | 628133  | 67567      | 4154638  |   |
| Net Ecosystem Carbon Balance 1 (flows)       | -13562             | -30705        | -50941  | -32585  | 10215      | -27475          | -7865       | -5012   | -6054      | -163985  |   |
| Statistical adjustment                       | 16597              | 28379         | 33235   | 15034   | -29421     | 11163           | -19714      | -15632  | 6178       | 45819    |   |
| Net Ecosystem Carbon Balance 2 (stocks)      | 3035               | -2326         | -17706  | -17551  | -19206     | -16312          | -27579      | -20644  | 123        | -118166  |   |
| Final Stock 2010                             | 1460990            | 2099608       | 4117837 | 4147571 | 2836159    | 3310802         | 3146278     | 3175957 | 432440     | 24727642 |   |
| Woody biomass                                | 876438             | 1134896       | 2050865 | 1726786 | 1776835    | 1627173         | 2197074     | 2388935 | 265316     | 14044318 |   |
| Topsoil organic carbon                       | 584551             | 964712        | 2066972 | 2420785 | 1059325    | 1683629         | 949204      | 787022  | 167124     | 10683324 | I |
|                                              |                    |               |         |         |            |                 |             |         |            |          |   |
| Net accessible bio-carbon resource 2010      | 73600              | 83094         | 86875   | 51642   | 112974     | 30296           | 87089       | 90500   | 0          | 617550   |   |
| Change in stocks in the previous year        | 3035               | -2326         | -17706  | -17551  | -19206     | -16312          | -27579      | -20644  | 123        | -118166  |   |
| Flows/inputs (+)                             | 335582             | 417954        | 819601  | 675923  | 736068     | 454057          | 642970      | 739278  | 68922      | 4890354  |   |
| Soil/decomposers respiration v2 (-)          | 265016             | 332534        | 715020  | 606730  | 603888     | 407449          | 528301      | 628133  | 67567      | 4154638  |   |
| Index of intensity of use of bio-carbon 2010 | 112                | 92            | 80      | 91      | 125        | 85              | 99          | 111     | 87         | 100      |   |


#### Woody biomass/ tons of C

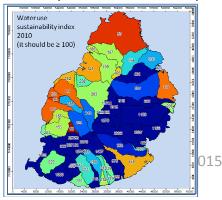


#### Change in NPP/ tons of C




Sugar cane harvest/ tons of C




# SEEA-ENCA Mauritius preliminary results : The ecosystem water account

The ecosystem water accounts follows the SEEA Water methodology and use preliminary results of the national water accounts. They are detailed by river basins and sub-basins where the hydrological system can be described consistently. Stocks of water are mainly aquifers and lakes/reservoirs, which play important role in Mauritius. Data have provided by the meteorological and water agencies. Water use by sub-basins is estimated from population census data and irrigation map. Satellite products have been used for evapotranspiration. The outcome is the calculation of the water really accessible for use and of an index of stress from water use intensity.

# Accessible water, mean amount by ha, 10<sup>3</sup> m<sup>3</sup>



Water use intensity stress index (stress when <100)

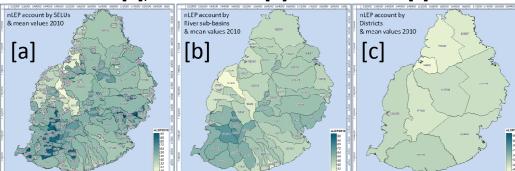


| Simplified water accounts by Districts, 2 | 2010             |               |            |           |            |                   |             |           |           | Mm3        |
|-------------------------------------------|------------------|---------------|------------|-----------|------------|-------------------|-------------|-----------|-----------|------------|
| Provisional                               | Rviere du Rennan | Panplenousses | Hacq       | Moka      | Gandport   | Plaines Willherns | Black River | Savanne   | PortLouis | Total      |
| AREA_ha                                   | 14703            | 18019         | 29826      | 23512     | 26134      | 19839             | 25558       | 24758     | 3976      | 186325     |
| Boreholes_nb River runoff districts coeff | 105<br>35        | 164<br>20     | 100<br>150 | 83<br>150 | 110<br>100 | 146<br>100        | 131<br>80   | 30<br>100 | 12<br>20  | 881<br>755 |
| Lake 2010 ha                              | 0                | 103           | 130        | 468       | 41         | 511               | 109         | 100       | 20        | 1251       |
| Stocks                                    | 3345             | 5231          | 3189       | 2681      | 3510       | 4687              | 4183        | 961       | 383       | 28170      |
| Aguifers                                  | 3343             | 5222          | 3184       | 2643      | 3503       | 4649              | 4171        | 955       | 382       | 28052      |
| Lakes/reservoirs                          | 0                | 7             | 0          | 32        | 3          | 35                | 7           | 1         | 0         | 86         |
| Rivers                                    | 2                | 2             | 5          | 6         | 5          | 3                 | 4           | 4         | 1         | 32         |
| Soil/vegetation                           |                  |               |            | _         | _          | _                 |             |           |           |            |
| Net Inflows                               | 75               | 176           | 292        | 342       | 355        | 293               | 155         | 353       | 12        | 2052       |
| Rainfall                                  | 173              | 236           | 579        | 633       | 629        | 484               | 302         | 603       | 49        | 3688       |
| EvapoTranspitation (actual), total        | 155              | 199           | 367        | 290       | 338        | 224               | 308         | 326       | 40        | 2247       |
| EvapoTranspitation (actual), spontaneous  | 109              | 115           | 310        | 268       | 294        | 207               | 167         | 269       | 40        | 1779       |
| Net transfers surface - groundwater       | 11               | 14            | 23         | 18        | 20         | 15                | 20          | 19        | 3         | 143        |
| Transfers between basins                  |                  | 41            |            | -41       |            |                   |             |           |           | 0          |
| Abstraction and Uses                      | 63               | 109           | 80         | 36        | 63         | 83                | 152         | 69        | 23        | 678        |
| Municipal Water Production                | 17               | 23            | 23         | 13        | 18         | 64                | 11          | 11        | 22        | 202        |
| Use of water                              | 8                | 12            | 11         | 7         | 9          | 32                | 5           | 6         | 11        | 101        |
| Loss of water in distribution             | 8                | 12            | 11         | 7         | 9          | 32                | 5           | 6         | 11        | 101        |
| Irrigation                                | 46               | 85            | 57         | 22        | 44         | 17                | 141         | 57        | 0         | 468        |
| Other                                     | 1                | 1             | 1          | 1         | 1          | 3                 | 0           | 0         | 1         | 8          |
| Waste water to rivers                     | 6                | 8             | 8          | 5         | 6          | 22                | 4           | 4         | 8         | 70         |
| Outflow to the sea                        | 78               | 46            | 324        | 318       | 217        | 212               | 172         | 213       | 50        | 1632       |
| Rivers runoff                             | 74               | 42            | 318        | 318       | 212        | 212               | 170         | 212       | 42        | 1602       |
| Waste water to the sea                    | 4                | 4             | 6          | 0         | 5          | 0                 | 2           | 1         | 8         | 30         |
| Induced ETA, Evaporation                  | 46               | 85            | 57         | 22        | 44         | 17                | 141         | 57        | 0         | 468        |
| Net Flows                                 | -103             | -52           | -156       | -29       | 41         | 2                 | -304        | 19        | -46       | -626       |
| Closing stocks                            | 3242             | 5179          | 3034       | 2652      | 3551       | 4690              | 3879        | 980       | 337       | 27544      |
|                                           |                  |               |            |           |            |                   |             |           |           |            |
| Accessible renewable water                | 83               | 124           | 217        | 200       | 219        | 187               | 228         | 213       | 36        | 1507       |
| Water use intensity (1): Average/ha       | 132              | 114           | 270        | 561       | 345        | 224               | 150         | 310       | 155       |            |
| Water use intensity (2): 1st decile       | 90               | 90            | 118        | 203       | 148        | 114               | 110         | 222       | 143       |            |
| , _, _, _, _, _, _, _, _, _, _, _, _, _,  | 50               | 50            |            |           |            |                   |             |           |           |            |

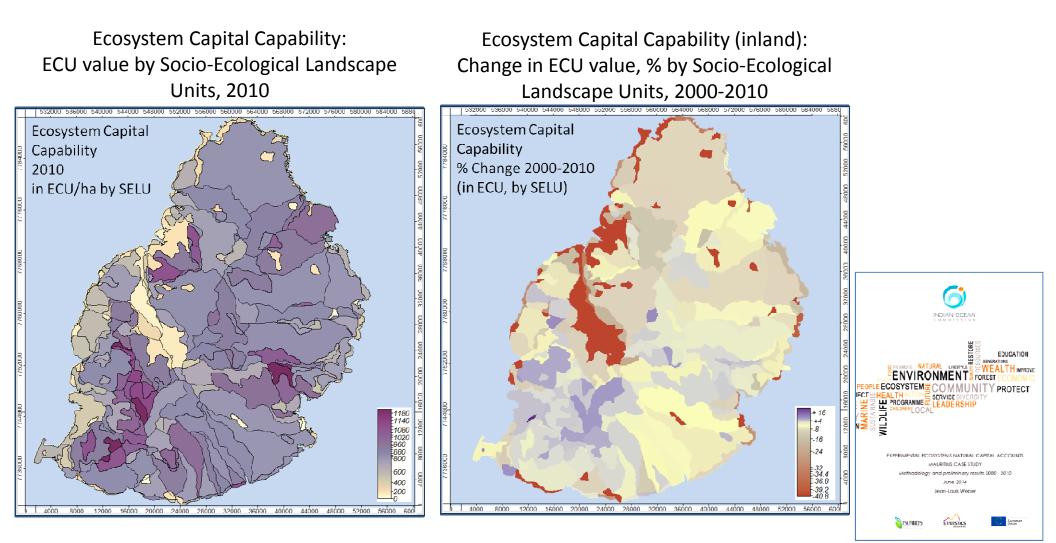
51

# SEEA-ENCA Mauritius preliminary results :

## The functional services account (depending from integrity and biodiversity)

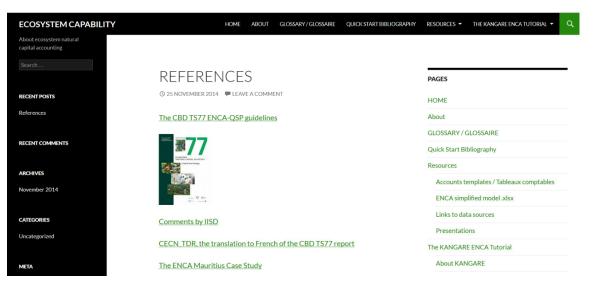

Information Associate

The biodiversity of systems and species account is made of two accounts which describe the state of ecosystems green infrastructure (landscapes, rivers and sea coastal zones) on the one hand and changes in species biodiversity on the other hand.


The NLEP index combines the green character of ecosystems and their fragmentation by roads which may alter their good functioning. Land cover is then weighted with NLEP. Highest NLEP values can be found where forests, shrubs, grass and natural habitats are predominant, in particular in mountainous and land coastal areas. Low NLEP values correspond to urbanised areas and intermediate score reflect agriculture dominated catchments.

| Green Infrastructure Accounts    |                    |               |         |         |            |                 |             |         |            |                           |
|----------------------------------|--------------------|---------------|---------|---------|------------|-----------------|-------------|---------|------------|---------------------------|
| Provisional                      | Riviere du Rempart | Pamplemousses | Flacq   | Moka    | Grand Port | Plaines Wilhems | Black River | Savanne | Port Louis | Total<br>/ Mean<br>values |
| AREA_ha                          | 14703              | 18019         | 29826   | 23512   | 26134      | 19839           | 25558       | 24758   | 3976       | 186325                    |
| Indexes (0-100 value per ha)     |                    |               |         |         |            |                 |             |         |            |                           |
| GBL 2000 index                   | 43.4               | 41.7          | 49.7    | 55.6    | 50.1       | 53.4            | 61.0        | 53.7    | 58.6       | 51.9                      |
| Fragmentation index              | 8.6                | 9.8           | 7.3     | 6.2     | 6.9        | 7.9             | 5.1         | 5.1     | 6.9        | 6.9                       |
| nLEP 2000 index                  | 39.7               | 37.6          | 46.0    | 52.1    | 46.6       | 49.2            | 57.9        | 51.0    | 54.5       | 48.4                      |
| Green Infrastructure Account     |                    |               |         |         |            |                 |             |         |            |                           |
| GBL 2000 / weighted ha           | 638105             | 751152        | 1481482 | 1307506 | 1309039    | 1060139         | 1559660     | 1330151 | 232911     | 9670145                   |
| nLEP 2000 / weighted ha          | 583021             | 677761        | 1373059 | 1226033 | 1218167    | 976061          | 1479992     | 1262700 | 216727     | 9013521                   |
| Indexes (0-100 value per ha)     |                    |               |         |         |            |                 |             |         |            |                           |
| GBL 2010 index                   | 42.0               | 40.6          | 49.2    | 55.1    | 49.8       | 52.4            | 60.5        | 53.5    | 50.7       | 51.1                      |
| Fragmentation index              | 8.6                | 9.8           | 7.3     | 6.2     | 6.9        | 7.9             | 5.1         | 5.1     | 6.9        | 6.9                       |
| nLEP 2010 index                  | 38.4               | 36.7          | 45.6    | 51.6    | 46.4       | 48.2            | 57.4        | 50.8    | 47.2       | 47.7                      |
| Green Infrastructure Account     |                    |               |         |         |            |                 |             |         |            |                           |
| GBL 2010 / weighted ha           | 617999             | 732184        | 1468542 | 1294945 | 1301938    | 1039397         | 1547086     | 1324150 | 201660     | 9527900                   |
| nLEP 2010 / weighted ha          | 564651             | 660647        | 1361066 | 1214254 | 1211558    | 956963          | 1468060     | 1257003 | 187648     | 8881851                   |
| Change in nLEP 2000-2010         | -18370             | -17114        | -11993  | -11779  | -6608      | -19097          | -11932      | -5697   | -29079     | -131670                   |
| Change in nLEP index % 2000-2011 | -3.2               | -2.5          | -0.9    | -1.0    | -0.5       | -2.0            | -0.8        | -0.5    | -13.4      | -1.5                      |

# Net Landscape Ecosystem Potential (NLEP) 2010 by SELU [a], River basins [b] and Districts [c]




# A first attempt to calculate Ecosystem Capital Capability (in ECU) for Mauritius



## **Provisional results**

Experimental ENCA, Mauritius Case Study (IOC, 2014)



http://www.ecosystemaccounting.net/